

Air Handling Unit & Modular Air Handling Unit

Established in 1991

TICA is a professional enterprise specialized in R&D, manufacturing, sales and services of environment cleaning and thermal energy utilization.

Vision

Strive to be the international leading integrated system and service provider in clean environment and utilization of thermal energy

Mission

Persist to maximize the value for customers through innovative technology and provide clean environment in order to improve the quality of life

TICA is a national high-tech enterprise, a single leading enterprise cultivated by the Ministry of Industry and Information Technology, a national brand cultivation enterprise of the Ministry of Industry and Information Technology, and a vice chairman member of China Refrigeration and Air-conditioning Industry Association. It has a national-recognized enterprise technology center, an enterprise academician workstation, and a post-doctoral research workstation. Its projects cover Beijing Bird's Nest Stadium, Water Cube, Wukesong Indoor Stadium, PetroChina, Sinopec, State Grid, Nanjing Panda, Hangzhou Xiaoshan International Airport, Hainan Airlines Group, Shangri-La Hotel, Manila Ocean Park, Abu Dhabi Al Muneera, SM City in Philippines and Unilever, etc.

TICA is also the outstanding provider of central air conditioners for China's subway networks and has successfully served nearly 70 key subway lines in major cities such as Beijing, Shanghai, Guangzhou, Shenzhen, Chengdu, Suzhou, Hangzhou and Tianjin. TICA is a professional supplier and service provider in China that specializes in system integration of clean environment. While for microelectronics, hospital operating rooms, biopharmaceutical industry and other professional purification areas, each achieving a market share of over 40%.

> **TICA**, Visible Cleanness TICA, Visible Energy-Saving

Air Handling Unit

Ceiling AHU

Heat & energy recovery ventilator Airflow: 1000~10500 CMH

Modular Air Handling Unit

TICA 2

Airflow: 1000CMH~15000 CMH

Jet Series AHU Airflow: 1000CMH~12000 CMH

Vertical AHU Airflow: 2000CMH~50000 CMH

Horizontal AHU Airflow: 2000CMH~60000 CMH

> Modular Air Handling Unit Airflow:1000~320000 CMH

Air Handling Unit-Vertical & Horizontal

TICA TAD series AHUs adopt TICA's patented cabinet of labyrinth-type inner and outer frame, which inherits the characteristics of TICA AHU with low air leakage rate, high strength and no cold bridge. By function section combination and structure, the unit is divided into 12 combination types. In addition, innovations have been made in the original mechanism, further facilitating the maintenance of the filter and coil. The unit air flow ranges from 2,000 m³/h to 60,000 m³/h with various static pressures available. The unit features a compact structure and excellent cooling and heating performance, and can be equipped with hot water coils and wet film humidifiers as required by customers.

Contents

Air Handling Unit-Vertical & Horizontal	P3
Air Handling Unit-Ceiling	P30
Modular Air Handling Unit	P47
► 56 Application	P56

ALALAL

Diagram of Left/Right Type of Unit

If the inlet and outlet pipes are on the left when facing the air flow direction, the unit is of left type. If the pipes are on the right, the unit is of right type.

Features & Advantages

Patent No.: ZL98111326.5 Patented technology through independent R&D

The cabinet panel adopting overall foam molding technology is surrounded by an aluminum alloy profile frame with concave and convex grooves. When installed, it forms a labyrinth sealing structure in tenon form, with the concave and convex modules interlocked. Fastened by bolts and embedded nuts, a labyrinth-type sealing cabinet with strong torsion resistance is formed. The mechanical strength rating of the cabinet can reach AHRI1350 CD4 and air leakage rating can reach AHRI1350 CL1.

No cold bridge, no rust

The cabinet interior is isolated from the exterior via polyurethane foamed under high pressure and specially-designed rubber sealing strip to avoid cold bridge. Cold bridge factor can reach AHRI1350 CB2. The external metal plate of the cabinet is surrounded by the aluminum frame. Corners of the metal plate are isolated from wet air to minimize dust

Excellent thermal insulation performance

Panels of the cabinet adopt one-time foam molding of polyurethane with low heat conductivity coefficient and external and internal metal plates. Foaming density is \geq 50 kg/m³. Therefore, the panels feature good performance of heat preservation, thermal insulation, shock absorption, and noise reduction. Thermal insulation performance can reach AHRI1350 CT2.

5

3 International professional certification

AHRI	CERTIFIED
Surger Station for the local division of the local divisio division of the local divisio	unding livel Countys

AHRI1350 Certification Performance Grade										
Cabin	et strength	CD4								
Air lea	CL1									
Heat transfer	Take air leakage rate into consideration	CT2								
coefficient	Without taking air leakage rate into consideration	CT2								
Cold bi	CB2									

High-efficiency heat exchanger

The heat exchanger is designed using the professional model selection software certified by AHRI to ensure that model parameters are consistent with performance of the actual heat exchanger and the heat exchanger can address model selection requirements of customers in different operating conditions. The coil is integrated with quality RoHS-certified copper tubes and unique corrugated aluminum fins through the advanced mechanical expansion tube process. The coil passes air tightness test before delivery to ensure no leakage.

Tailor-made

The product is designed with 23 standard models, air flow ranging from 2,000 CMH to 60,000 CMH, 12 standard combinations, various external static pressures, as well as 25 mm and 50 mm wall thicknesses selectable. It provides cooling, heating, filter, and humidification functions, and enables flexible function combinations with a variety of accessories to meet requirements of different customers.

Multiple purification solutions

The product can be configured with plate filters and bag filters at different levels to meet requirements of varied application sites. Standard horizontal type units 3, 5, and 9 can use high-medium efficiency anti-bacterial bag filters, while standard horizontal type unit 6 can adopt the advanced electrostatic haze removal and sterilization technology to solve the problem of air pollution in public places such as subways and airports and create a healthy and safe environment.

Intelligent integrated control

Mechanical & electrical integration control enables integrated control of fan, motor, and water valve. The control system is composed of lowvoltage apparatuses and temperature controllers from internationally wellknown brands. If the unit is equipped with a temperature controller with communication function, the unit can access third-party control systems, such as a building automation and control system, to enable remote and network-based unit monitoring.

The control cabinet is equipped with multiple protection technologies, such as power supply misphase, power supply phase loss, and current overload, to ensure that the unit operates stably. In addition, the unit reserves diversified external interlocking, such as control signals of fire valves, fresh air valves, and switching type water valves.

Integrated control can save energy of the chiller, while ensuring comfortable room temperature.

Nomenclature

Code 10

Cooling coil

unavailable

Code 11

Hot water coil

Code 14

Code 15

Code 16

150 mm, 4 - 200 mm

Codes 12 and 13

External static pressure *10 Pa

Fan outlet direction (standard UF)

External panel color: W - white (standard)

T - FT. R - UR. F - UF. B - FB

Code 1

Unit series: TICA AHU TAD - plate thickness 25 mm TBD - plate thickness 50 mm

Codes 2, 3 and 4

Unit air flow *100 m³/h

Code 5

Design S/N

Codes 6 and 7

Unit type

H1 - horizontal-type standard 1, H2 - horizontal-type standard 2, H3 horizontal-type standard 3, H4 - horizontal-type standard 4, H5 - horizontal-type standard 5, H6 - horizontal-type standard 6, H8 horizontal-type standard 8, H9 - horizontal-type standard 9, HA - horizontal-type standard 10, V1 - vertical-type standard 1, V2 vertical-type standard 2, V3 - vertical-type standard 3 (When a horizontal-type standard unit is ceiling-mounted, code 6 is changed to "C".)

Code 8

Unit direction: L - left, R - right

Code 9

Unit operating condition: R - return air, F - fresh air, N - no cooling coil

Upper front outlet (UF)

Fan Air Outlet Direction

3 - 3 rows, 4 - 4 rows, 5 - 5 rows, 6 - 6 rows, 8 - 8 rows, N - this function

Note: The air outlet direction of a horizontal type unit can be changed,

Thickness of wet film humidifier: 0 - N/A. 1 - 50 mm. 2 - 100 mm. 3 -

and in this case, consult us for customization services.

1 - 1 row, 2 - 2 rows, N - this function unavailable

External nylon filter + cooling coil + fan

Vertical-type standard 2 Return air shutter + cooling coil + fan + air

outlet grille

Horizontal-type standard 1 External nylon filter + cooling coil + fan

Horizontal-type standard 4 Mixing + primary filter + cooling coil + dry steam humidifier + fan

Horizontal-type standard 5 Mixing + primary filter + medium efficiency filter + cooling coil + dry steam humidifier + fan

Horizontal-type standard 8 External nylon filter + heating coil + fan

Notes:

1. The vertical-type standard 1 (V1), horizontal-type standard 1 (H1), and horizontal-type standard 8 (H8) come with a standard nylon filter, which can be replaced by a primary plate filter.

2. A wet film humidifier can be added behind the cooling coil.

Upper front outlet (UF)

Upper rear outlet (UR)

- Front top outlet (FT)
- Front below outlet (FB)

Vertical-type standard 3

Return air shutter + cooling coil + fan + air jet nozzle

Horizontal-type standard 2

Mixing + primary filter + cooling coil + fan

Horizontal-type standard 9 Mixing + primary filter + medium

Horizontal-type standard 3

Mixing + primary filter + medium efficiency filter + cooling coil + fan

Horizontal-type standard 6

Mixing + primary filter + electrostatic cleaner + cooling coil + fan

Horizontal-type standard 10 Air inlet + fan

- 3. A hot water coil, steam coil, and water barrier can be added behind the cooling coil
- 4. The standard primary filter is a G3 plate filter, and the standard medium efficiency filter is an M5 bag filter.

Technical Specifications

Return air condition

				4	Rows			6 Rows						
Model	Air Flow	Rated Cooling Capacity	Rated Heating Capacity	Water Flow	Water Pressure Drop	Chilled Water Pipe Diameter	Condensate Water Pipe Diameter	Rated Cooling Capacity	Rated Heating Capacity	Water Flow	Water Pressure Drop	Chilled Water Pipe Diameter	Condensate Water Pipe Diameter	
TAD	m³/h	kW	kW	l/s	kPa	DN	DN	kW	kW	l/s	kPa	DN	DN	
020E	2000	11.0	22.8	0.5	17.4	32	25	14.8	27.6	0.7	44.8	32	25	
030E	3000	17.2	35.1	0.8	28.7	32	25	22.7	41.9	1.1	71.6	32	25	
040E	4000	23.4	47.1	1.1	45.3	32	25	29.6	54.6	1.4	34.8	32	25	
050E	5000	28.2	57.0	1.3	38.9	32	25	34.5	64.5	1.6	30.3	32	25	
060E	6000	35.1	69.1	1.7	59.5	40	25	42.4	78.2	2.0	40.3	40	25	
070E	7000	41.0	80.7	2.0	72.1	50	25	48.8	92.5	2.3	50.0	50	25	
080E	8000	48.2	93.7	2.3	38.5	50	25	57.2	106.7	2.7	74.7	50	25	
090E	9000	52.3	102.6	2.5	35.8	50	25	65.1	120.6	3.1	75.7	50	25	
105E	10500	59.7	115.7	2.8	50.6	50	25	74.2	138.1	3.5	48.8	50	25	
120E	12000	69.8	136.8	3.3	73.4	50	25	89.9	165.3	4.3	75.6	50	25	
135E	13500	79.1	158.1	3.8	48.2	65	32	104.1	187.7	5.0	39.0	65	32	
150E	15000	90.4	172.7	4.3	49.1	65	32	115.0	207.6	5.5	38.1	65	32	
180E	18000	107.0	210.8	5.1	66.4	65	32	136.4	247.2	6.5	51.2	65	32	
210E	21000	126.6	247.3	6.0	85.3	65	32	157.4	289.4	7.5	62.0	65	32	
240E	24000	148.8	285.6	7.1	39.0	65	32	181.9	332.2	8.7	84.0	65	32	
270E	27000	167.5	321.3	8.0	43.0	65	32	204.7	372.0	9.8	85.5	65	32	
300E	30000	186.1	357.0	8.9	43.5	65	32	226.1	413.4	10.8	39.0	65	32	
330E	33000	204.7	392.7	9.8	58.0	80	32	253.0	456.8	12.1	52.0	80	32	
350E	35000	220.1	416.5	10.5	66.5	80	32	271.3	486.9	12.9	59.5	80	32	
400E	40000	230.8	451.0	11.0	69.2	80	32	299.8	546.1	14.3	52.5	80	32	
450E	45000	248.1	484.8	11.8	71.5	80	32	341.1	617.2	16.3	59.8	80	32	
500E	50000	275.6	538.5	13.1	79.1	80	32	379.0	685.9	18.1	65.9	80	32	
600E	60000	362.0	671.3	17.2	68.5	80	32	452.7	708.0	21.6	52.5	80	32	

★ Note:

1. Cooling: The dry bulb temperature of inlet air is 27°C, the wet bulb temperature is 19.5°C, and the inlet/outlet water temperature is 7°C/12°C; Heating: The dry bulb temperature of inlet air is 15°C, the hot water inlet temperature is 60°C, and the water flow is the same as that for cooling.

2. When the fresh air volume is increased, the cooling capacity of the unit will change. For details, contact TICA.

3. For specifications of other rows of coils and air inlet conditions, see the model selection software.

Fresh Air Condition

				4	Rows			6 Rows					
Model	Air Flow	Rated Cooling Capacity	Rated Heating Capacity	Water Flow	Water Pressure Drop	Chilled Water Pipe Diameter	Condensate Water Pipe Diameter	Rated Cooling Capacity	Rated Heating Capacity	Water Flow	Water Pressure Drop	Chilled Water Pipe Diameter	Condensate Water Pipe Diameter
TAD	m³/h	kW	kW	l/s	kPa	DN	DN	kW	kW	l/s	kPa	DN	DN
020E	2000	27.4	30.7	1.3	31.8	40	25	33.7	34.2	1.6	66.5	40	25
030E	3000	40.5	44.3	1.9	44.0	40	25	47.9	48.9	2.3	89.6	40	25
040E	4000	54.7	58.8	2.6	62.5	50	25	63.8	67.0	3.0	55.8	50	25
050E	5000	68.4	73.8	3.3	64.3	50	25	79.8	83.9	3.8	53.5	50	25
060E	6000	81.0	85.0	3.9	78.3	50	25	97.9	100.5	4.7	74.9	50	25
070E	7000	89.6	95.0	4.3	40.5	65	25	115.4	116.7	5.5	31.4	65	25
080E	8000	101.7	108.6	4.9	57.7	65	25	127.7	134.5	6.1	42.8	65	25
090E	9000	116.8	123.5	5.6	58.5	65	25	140.5	146.7	6.7	40.7	65	25
105E	10500	132.8	154.9	7.0	78.6	65	25	162.1	167.3	7.7	60.0	65	25
120E	12000	157.9	175.3	7.5	82.7	65	25	193.6	196.5	9.2	89.0	65	25
135E	13500	172.8	195.2	8.2	27.2	80	32	222.6	223.1	10.6	61.5	80	32
150E	15000	194.7	221.3	9.3	27.8	80	32	252.6	252.3	12.0	62.8	80	32
180E	18000	230.5	257.6	11.0	37.5	80	32	293.6	296.1	13.1	74.4	80	32
210E	21000	276.3	303.6	13.2	51.5	80	32	331.5	336.1	13.9	83.2	80	32
240E	24000	319.9	348.8	15.2	73.2	80	32	*366.2	*380.6	*12.5	80.0	80	32
270E	27000	359.9	389.7	17.1	76.5	80	32	*409.6	*428.2	*13.9	82.0	80	32
300E	30000	384.1	420.5	18.3	70.0	80	32	*455.2	*473.6	*15.5	80.0	80	32
330E	33000	445.7	482.0	21.2	87.5	80	32	*503.6	*523.3	*17.1	84.0	80	32
350E	35000	454.3	490.5	21.6	76.5	80	32	*552.5	*578.3	*15.5	83.9	80	32
400E	40000	477.1	525.2	22.7	40.3	80	32	*589.3	*622.5	*18.7	*83.5	80	32
450E	45000	536.7	594.2	25.6	45.3	80	32	*647.2	*679.6	*19.3	*79.8	80	32
500E	50000	605.1	663.9	28.8	51.6	80	32	*727.9	*774.6	*21.7	*89.9	80	32
600E	60000	820.9	828.5	39.0	55.5	80	32	990.2	883.2	46.8	106.0	80	32

★ Note:

1. Cooling: The dry bulb temperature of inlet air is 35°C, the wet bulb temperature is 28°C, and the inlet/outlet water temperature is 7°C/12°C; Heating: The dry bulb temperature of inlet air is 7°C, the hot water inlet temperature is 60 $^\circ\text{C},$ and the water flow is the same as that for cooling.

2. An asterisk (*) indicates that the temperature difference between the inlet and return water is greater than 5°C in order to control the pressure drop of the refrigerant water pipe.

3. For specifications of other rows of coils and air inlet conditions, see the model selection software.

Return air condition (4-Pipe Heating Coil)

			1 F	Row		2 Rows				
Model	Air Flow	Rated Heating Capacity	Water Flow	Water Pressure Drop	Water Pipe Diameter	Rated Heating Capacity	Water Flow	Water Pressure Drop	Water Pipe Diameter	
TAD	m³/h	kW	l/s	kPa	DN	kW	l/s	kPa	DN	
020E	2000	6.7	0.2	0.2	32	13.6	0.3	1.2	32	
030E	3000	10.2	0.3	0.3	32	20.0	0.5	2.0	32	
040E	4000	13.8	0.3	0.5	32	27.2	0.7	3.0	32	
050E	5000	18.5	0.5	0.5	32	35.8	0.9	3.3	32	
060E	6000	23.2	0.6	0.7	32	43.7	1.1	4.3	32	
070E	7000	27.6	0.7	0.9	32	50.9	1.2	5.1	32	
080E	8000	32.5	0.8	1.3	32	56.8	1.4	6.4	32	
090E	9000	37.0	0.9	1.3	32	64.4	1.6	6.5	32	
105E	10500	42.0	1.0	1.8	32	77.7	1.9	10.3	32	
120E	12000	48.7	1.2	2.5	32	8.88	2.2	14.2	32	
135E	13500	56.4	1.4	3.7	40	101.5	2.5	20.4	40	
150E	15000	61.7	1.5	3.9	40	111.0	2.7	21.1	40	
180E	18000	75.2	1.8	5.4	40	135.3	3.3	29.2	40	
210E	21000	88.9	2.2	7.0	40	157.8	3.9	37.5	40	
240E	24000	103.1	2.5	10.2	40	174.7	4.3	7.7	40	
270E	27000	116.0	2.8	10.3	40	196.5	4.8	7.8	40	
300E	30000	128.8	3.1	10.4	40	216.5	5.3	7.7	40	
330E	33000	141.7	3.5	13.4	40	240.1	5.9	10.1	40	
350E	35000	150.3	3.7	15.6	40	254.7	6.2	11.7	40	
400E	40000	167.0	4.1	13.9	40	281.5	6.9	10.4	40	
450E	45000	187.9	4.6	15.3	40	322.1	7.9	11.8	40	
500E	50000	208.8	5.1	16.7	40	357.9	8.7	12.8	40	
600E	60000	258.0	5.9	25.2	40	427.1	9.9	47.5	40	

Fresh Air Condition (4-Pipe Heating Coil)

	Air Elour		1 F	Row		2 Rows				
Model	Air Flow	Rated Heating Capacity	Water Flow	Water Pressure Drop	Water Pipe Diameter	Rated Heating Capacity	Water Flow	Water Pressure Drop	Water Pipe Diameter	
TAD	m³/h	kW	l/s	kPa	DN	kW	l/s	kPa	DN	
020E	2000	9.0	0.2	0.3	32	16.6	0.4	1.7	32	
030E	3000	13.5	0.3	0.5	32	25.7	0.6	3.1	32	
040E	4000	18.6	0.5	0.8	32	33.2	0.8	4.2	32	
050E	5000	23.2	0.6	0.8	32	43.6	1.1	4.6	32	
060E	6000	28.7	0.7	1.0	32	50.6	1.2	5.5	32	
070E	7000	33.9	0.8	1.3	32	63.0	1.5	7.2	32	
080E	8000	39.9	1.0	1.9	32	73.1	1.8	10.5	32	
090E	9000	45.5	1.1	1.8	32	78.4	1.9	9.1	32	
105E	10500	51.6	1.3	2.5	32	92.9	2.3	14.0	32	
120E	12000	59.0	1.4	3.5	32	106.2	2.6	19.2	32	
135E	13500	69.2	1.7	5.3	40	123.3	3.0	28.4	40	
150E	15000	75.9	1.9	5.5	40	134.9	3.3	29.5	40	
180E	18000	92.3	2.3	7.6	40	161.9	3.9	39.7	40	
210E	21000	109.2	2.7	10.0	40	182.9	4.5	7.4	40	
240E	24000	124.8	3.0	14.1	40	212.4	5.2	10.7	40	
270E	27000	140.4	3.4	14.3	40	237.1	5.8	10.7	40	
300E	30000	156.0	3.8	14.4	40	261.3	6.4	10.7	40	
330E	33000	173.9	4.2	19.0	40	292.1	7.1	14.1	40	
350E	35000	184.4	4.5	22.1	40	309.8	7.6	16.4	40	
400E	40000	202.3	4.9	19.2	40	342.8	8.4	14.5	40	
450E	45000	227.6	5.6	21.2	40	385.7	9.4	16.0	40	
500E	50000	256.1	6.2	23.6	40	423.6	10.3	17.1	40	
600E	60000	312.8	7.2	36.2	40	508.0	10.6	54.3	40	

★ Note:

1. Heating (return air condition): The dry bulb temperature of inlet air is 15°C, the hot water inlet temperature is 60°C, and the water outlet temperature is 50°C. 2. Heating (fresh air condition): The dry bulb temperature of inlet air is 7°C, the hot water inlet temperature is 60°C, and the water outlet temperature is 50°C.

Dimensions and Weights

Vertical-type standard unit 1

External nylon filter + cooling coil + fan

-GxH-

	٨	D	C	D	E	C	ц	K		Weigh	nt (kg)
IVIOUEI TAD	A	D		D		G	п	r	L	4 Rows	6 Rows
020E	640	900	1120	1000	580	232	262	840	390	137	143
030E	640	1000	1220	1100	580	298	262	940	490	153	160
040E	640	1100	1320	1200	580	331	289	1040	550	175	183
050E	720	1100	1520	1400	660	309	341	1040	700	206	216
060E	720	1200	1620	1500	660	395	341	1140	750	231	244
070E	800	1200	1720	1600	740	373	404	1140	800	257	272
080E	800	1400	1720	1600	740	373	404	1340	800	272	289
090E	930	1400	1920	1800	870	430	478	1340	900	326	344
105E	930	1600	1920	1800	870	430	478	1540	900	360	376
120E	930	1700	1920	1800	870	557	478	1640	900	367	394
135E	930	2000	1920	1800	870	1040	404	1940	900	481	518
150E	930	2000	2020	1900	870	1040	404	1940	1000	491	520
180E	960	2200	2120	2000	900	1203	478	2140	1050	570	611
210E	960	2500	2120	2000	900	1203	478	2440	1050	631	673
240E	960	2800	2220	2100	900	1572	478	2740	1150	682	730
270E	960	2800	2320	2200	900	1572	478	2740	1200	735	789
300E	960	2800	2420	2300	900	1572	478	2740	1350	786	845
330E	1060	3100	2420	2300	1000	1588	569	3040	1300	952	1018
350E	1160	3200	2520	2400	1100	1776	638	3140	1300	1020	1089
400E	1160	3400	2620	2500	1100	1776	638	3340	1400	1067	1181
450E	1160	3600	2720	2600	1100	1776	638	3540	1500	1112	1129
500E	1160	3800	2720	2600	1100	1776	638	3740	1500	1194	1330

★ Note:

1. When a 50 mm/100 mm wet film humidifier is added, the unit dimensions remain unchanged.

2. The standard air outlet mode of the unit is upper front outlet (UF).

3. The above specifications are dimensions of the TAD unit, and those of the TBD units A, B, C, D, and E need to be increased by 50 mm each.

Vertical-type standard unit 2

Return air shutter + cooling coil + fan + air outlet grille

Model TAD	А	В	С	D	G	Н	к	L
020E	580	900	1380	1300	700	150	745	295
030E	580	1000	1480	1400	700	150	845	395
040E	580	1100	1680	1600	700	250	945	455
050E	660	1100	1880	1800	700	250	945	605
060E	660	1200	1980	1900	900	250	1045	655
070E	740	1200	2180	2100	900	350	1045	705
080E	740	1400	2180	2100	900	350	1245	705
090E	870	1400	2380	2300	900	350	1245	805
105E	870	1600	2380	2300	1250	350	1445	805
120E	870	1700	2380	2300	1250	350	1545	805
135E	870	2000	2380	2300	1550	350	1820	805
150E	870	2000	2460	2380	1550	350	1820	905

Vertical-type standard unit 3

Return air shutter + cooling coil + fan + air jet nozzle

Model TAD	A	В	С	D	Nozzle Qty	Nozzle Size	К	L
020E	580	900	1630	1550	1	400	745	295
030E	580	1000	1630	1550	2	315	845	395
040E	580	1100	1830	1750	2	400	945	455
050E	660	1100	2030	1950	2	400	945	605
060E	660	1400	2280	2200	2	500	1245	655
070E	740	1400	2380	2300	2	500	1245	705
080E	740	1400	2380	2300	2	500	1245	705
090E	870	1700	2430	2350	3	400	1550	805
105E	870	2100	2580	2500	3	500	1950	805
120E	870	2100	2580	2500	3	500	1950	805
135E	870	2800	2580	2500	4	500	2650	805
150E	870	2800	2680	2600	4	500	2650	905

Horizontal-type standard unit 1

External nylon filter + cooling coil + fan

	^	D	C	D	E	C	ц	K L		We	ight
WOULD TAD	~	D	C	D	L	G		I. I.		4 Rows	6 Rows
020E	1060	853	690	570	1000	232	262	793	510	129	138
030E	1160	953	720	600	1100	298	262	893	540	148	155
040E	1160	1053	790	670	1100	331	289	993	610	167	175
050E	1160	1053	920	800	1100	309	341	993	740	186	197
060E	1160	1153	990	870	1100	395	341	1093	810	211	223
070E	1260	1203	1070	950	1200	373	404	1143	890	242	257
080E	1260	1353	1070	950	1200	373	404	1293	890	256	282
090E	1410	1353	1170	1050	1350	430	478	1293	990	299	318
105E	1410	1553	1170	1050	1350	430	478	1493	990	325	342
120E	1460	1703	1170	1050	1400	557	478	1643	990	350	376
135E	1360	1953	1170	1050	1300	1040	404	1893	990	442	459
150E	1360	1953	1270	1150	1300	1040	404	1893	1090	447	470
180E	1510	2153	1320	1200	1450	1203	478	2093	1140	539	580
210E	1510	2353	1370	1250	1450	1203	478	2293	1190	584	626
240E	1510	2653	1370	1250	1450	1572	478	2593	1190	644	692
270E	1510	2653	1500	1380	1450	1572	478	2593	1320	728	781
300E	1560	2653	1620	1500	1500	1572	478	2593	1440	761	813
330E	1610	2903	1620	1500	1550	1588	569	2843	1440	882	947
350E	1710	3053	1620	1500	1650	1776	638	2993	1440	953	1022
400E	1760	3053	1873	1753	1700	1776	638	2993	1693	986	1099
450E	1760	3053	2000	1880	1700	1776	638	2993	1820	1070	1187
500E	1760	3153	2130	2010	1700	1776	638	3093	1950	1097	1231
600E	2660	3153	2473	2353	2600	1130	1080	3093	2298	1316	1477

🗙 Note:

1. When a 50 mm/100 mm wet film humidifier is added, the unit dimensions remain unchanged. When a 150 mm/200 mm wet film humidifier is added, the dimensions of units A and E are increased by 200 mm.

2. TAD500~600EH units adopt dual cooling coils.

3. If an external primary plate slide rail is used, dimension A in the table needs to be increased by 40 mm.

4. If a unit uses horizontal air discharge mode, dimension C in the table needs to be decreased by 40 mm.

5. The above specifications are dimensions of the TAD unit, and those of the TBD units A, B, C, D, and E need to be increased by 50 mm each.

Mixing + primary filter + cooling coil + fan

	Δ	B	C	П	F	G	ц	ĸ		Weigl	nt (kg)
NOUGH TAD	A	D	C		L	6	11	IX.	L	4 Rows	6 Rows
020E	1540	853	690	570	1500	232	262	600	160	158	164
030E	1640	953	720	600	1600	298	262	600	300	177	184
040E	1640	1053	790	670	1600	331	289	700	300	201	208
050E	1640	1053	920	800	1600	309	341	800	300	230	240
060E	1640	1153	990	870	1600	395	341	900	300	261	274
070E	1740	1203	1070	950	1700	373	404	1000	300	288	303
080E	1740	1353	1070	950	1700	373	404	1100	300	319	335
090E	1990	1353	1170	1050	1950	430	478	1000	440	343	362
105E	1990	1553	1170	1050	1950	430	478	1100	440	392	408
120E	2040	1703	1170	1050	2000	557	478	1200	440	426	452
135E	1940	1953	1170	1050	1900	1040	404	1300	440	525	554
150E	1940	1953	1270	1150	1900	1040	404	1500	440	569	597
180E	2090	2153	1320	1200	2050	1203	478	1700	440	652	693
210E	2090	2353	1370	1250	2050	1203	478	1900	440	707	750
240E	2090	2653	1370	1250	2050	1572	478	2200	440	780	829
270E	2290	2653	1500	1380	2250	1572	478	2200	580	912	965
300E	2340	2653	1620	1500	2300	1572	478	2300	580	958	1017
330E	2390	2903	1620	1500	2350	1588	569	2400	580	1084	1149
350E	2490	3053	1620	1500	2450	1776	638	2400	580	1170	1239
400E	2540	3053	1873	1753	2500	1776	638	2600	580	1202	1315
450E	2540	3053	2000	1880	2500	1776	638	2800	580	1285	1403
500E	2640	3153	2130	2010	2600	1776	638	2800	630	1324	1459
600E	3640	3153	2473	2353	3600	1130	1080	2800	750	1588	1751

★ Note:

1. When a 50 mm/100 mm wet film humidifier is added, the unit dimensions remain unchanged. When a 150 mm/200 mm wet film humidifier is added, the dimensions of units A and E are increased by 200 mm.

2. TAD500~600EH units adopt dual cooling coils.

3. The above specifications are dimensions of the TAD unit, and those of the TBD units A, B, C, D, and E need to be increased by 50 mm each.

Horizontal-type standard unit 3

Mixing + primary filter + medium efficiency filter + cooling coil + fan

	٨	P	C	D	E	G	Ц	K	1	Weigl	nt (kg)
WOULD IND	A	Ь	C	D	L	9	11	IX.	L	4 Rows	6 Rows
020E	1990	853	690	570	1950	232	262	600	160	176	181
030E	2040	953	720	600	2000	298	262	600	300	197	201
040E	2090	1053	790	670	2050	331	289	700	300	224	232
050E	2090	1053	920	800	2050	309	341	800	300	249	259
060E	2090	1153	990	870	2050	395	341	900	300	282	295
070E	2190	1203	1070	950	2150	373	404	1000	300	310	324
080E	2190	1353	1070	950	2150	373	404	1100	300	345	362
090E	2440	1353	1170	1050	2400	430	478	1000	440	394	412
105E	2440	1553	1170	1050	2400	430	478	1100	440	433	450
120E	2490	1703	1170	1050	2450	557	478	1200	440	471	494
135E	2390	1953	1170	1050	2350	1040	404	1300	440	574	598
150E	2390	1953	1270	1150	2350	1040	404	1500	440	622	645
180E	2540	2153	1320	1200	2500	1203	478	1700	440	727	759
210E	2540	2353	1370	1250	2500	1203	478	1900	440	809	842
240E	2540	2653	1370	1250	2500	1572	478	2200	440	885	922
270E	2740	2653	1500	1380	2700	1572	478	2200	580	978	1022
300E	2790	2653	1620	1500	2750	1572	478	2300	580	1033	1092
330E	2840	2903	1620	1500	2800	1588	569	2400	580	1185	1250
350E	2940	3053	1620	1500	2900	1776	638	2400	580	1246	1316
400E	2940	3053	1873	1753	2900	1776	638	2600	580	1306	1400
450E	2940	3053	2000	1880	2900	1776	638	2800	580	1421	1539
500E	3040	3153	2130	2010	3000	1776	638	2800	630	1462	1597
600E	4040	3153	2473	2353	4000	1130	1080	2800	750	1754	1916

★ Note:

1. When a 50 mm/100 mm wet film humidifier is added, the unit dimensions remain unchanged. When a 150 mm/200 mm wet film humidifier is added, the dimensions of units A and E are increased by 200 mm.

2. TAD500~600EH units adopt dual cooling coils.

3. The above specifications are dimensions of the TAD unit, and those of the TBD units A, B, C, D, and E need to be increased by 50 mm each. 4. The standard primary filter is a G3 plate filter, and G4 filter can be used. The standard medium efficiency filter is an M5 bag filter, and M6 or M7 filter or a high-medium efficiency anti-bacterial bag filter can be used.

Mixing + primary filter + cooling coil + dry steam humidifier + fan

Model TAD	A	В	С	D	E	G	Н	K	L
020E	2040	853	690	570	2000	232	262	600	160
030E	2140	953	720	600	2100	298	262	600	300
040E	2140	1053	790	670	2100	331	289	700	300
050E	2140	1053	920	800	2100	309	341	800	300
060E	2140	1153	990	870	2100	395	341	900	300
070E	2240	1203	1070	950	2200	373	404	1000	300
080E	2240	1353	1070	950	2200	373	404	1100	440
090E	2490	1353	1170	1050	2450	430	478	1000	440
105E	2490	1553	1170	1050	2450	430	478	1100	440
120E	2540	1703	1170	1050	2500	557	478	1200	440
135E	2440	1953	1170	1050	2400	1040	404	1300	440
150E	2440	1953	1270	1150	2400	1040	404	1500	440
180E	2590	2153	1320	1200	2550	1203	478	1700	440
210E	2590	2353	1370	1250	2550	1203	478	1900	440
240E	2590	2653	1370	1250	2550	1572	478	2200	440
270E	2790	2653	1500	1380	2750	1572	478	2200	580
300E	2840	2653	1620	1500	2800	1572	478	2300	580
330E	2890	2903	1620	1500	2850	1588	569	2400	580
350E	2990	3053	1620	1500	2950	1776	638	2400	580
400E	3040	3053	1873	1753	3000	1776	638	2600	580
450E	3040	3053	2000	1880	3000	1776	638	2800	580
500E	3140	3153	2130	2010	3100	1776	638	2800	630

★ Note:

1. The above specifications are dimensions of the TAD unit, and those of the TBD units A, B, C, D, and E need to be increased by 50 mm each.

Horizontal-type standard unit 5

Mixing + primary filter + medium efficiency filter + cooling coil + dry steam humidifier + fan

Model TAD	A	В	С	D	E	G	Н	K	L
020E	2490	853	690	570	2450	232	262	600	160
030E	2540	953	720	600	2500	298	262	600	300
040E	2590	1053	790	670	2550	331	289	700	300
050E	2590	1053	920	800	2550	309	341	800	300
060E	2590	1153	990	870	2550	395	341	900	300
070E	2690	1203	1070	950	2650	373	404	1000	300
080E	2690	1353	1070	950	2650	373	404	1100	300
090E	2940	1353	1170	1050	2900	430	478	1000	440
105E	2940	1553	1170	1050	2900	430	478	1100	440
120E	2990	1703	1170	1050	2950	557	478	1200	440
135E	2890	1953	1170	1050	2850	1040	404	1300	440
150E	2890	1953	1270	1150	2850	1040	404	1500	440
180E	3040	2153	1320	1200	3000	1203	478	1700	440
210E	3040	2353	1370	1250	3000	1203	478	1900	440
240E	3040	2653	1370	1250	3000	1572	478	2200	440
270E	3240	2653	1500	1380	3200	1572	478	2200	580
300E	3290	2653	1620	1500	3250	1572	478	2300	580
330E	3340	2903	1620	1500	3300	1588	569	2400	580
350E	3440	3053	1620	1500	3400	1776	638	2400	580
400E	3440	3053	1873	1753	3400	1776	638	2600	580
450E	3440	3053	2000	1880	3400	1776	638	2800	580
500E	3540	3153	2130	2010	3500	1776	638	2800	630

★ Note:

1. The above specifications are dimensions of the TAD unit, and those of the TBD units A, B, C, D, and E need to be increased by 50 mm each. 2. The standard primary filter is a G3 plate filter, and G4 filter can be used. The standard medium efficiency filter is an M5 bag filter, and M6 or M7 filter or a high-medium efficiency anti-bacterial bag filter can be used.

Mixing + primary filter + electrostatic cleaner + cooling coil + fan

Model TAD	А	В	С	D	E	G	Н	K	L
020E	1990	853	690	570	1950	232	262	600	160
030E	2040	953	720	600	2000	298	262	600	300
040E	2090	1053	790	670	2050	331	289	700	300
050E	2090	1053	920	800	2050	309	341	800	300
060E	2090	1153	990	870	2050	395	341	900	300
070E	2190	1203	1070	950	2150	373	404	1000	300
080E	2190	1353	1070	950	2150	373	404	1100	300
090E	2440	1353	1170	1050	2400	430	478	1000	440
105E	2440	1553	1170	1050	2400	430	478	1100	440
120E	2490	1703	1170	1050	2450	557	478	1200	440
135E	2390	1953	1170	1050	2350	1040	404	1300	440
150E	2390	1953	1270	1150	2350	1040	404	1500	440
180E	2540	2153	1320	1200	2500	1203	478	1700	440
210E	2540	2353	1370	1250	2500	1203	478	1900	440
240E	2540	2653	1370	1250	2500	1572	478	2200	440
270E	2740	2653	1500	1380	2700	1572	478	2200	580
300E	2790	2653	1620	1500	2750	1572	478	2300	580
330E	2840	2903	1620	1500	2800	1588	569	2400	580
350E	2940	3053	1620	1500	2900	1776	638	2400	580
400E	2940	3053	1873	1753	2900	1776	638	2600	580
450E	2940	3053	2000	1880	2900	1776	638	2800	580
500E	3040	3153	2130	2010	3000	1776	638	2800	630

★ Note:

1. The above specifications are dimensions of the TAD unit, and those of the TBD units A, B, C, D, and E need to be increased by 50 mm each.

Horizontal-type standard unit 8

External nylon filter + heating coil + fan

	٨	P	C	D	E	G	Ц	K	I	Weight (kg)	
WOULD TAD	A	В	C	D	L	9	11	ľ	L	1 Row	2 Rows
020E	1060	853	690	570	1000	232	262	793	540	116	120
030E	1160	953	720	600	1100	298	262	893	540	141	145
040E	1160	1053	790	670	1100	331	289	993	610	159	163
050E	1160	1053	920	800	1100	309	341	993	740	175	181
060E	1160	1153	990	870	1100	395	341	1093	810	199	205
070E	1260	1203	1070	950	1200	373	404	1143	890	227	235
080E	1260	1353	1070	950	1200	373	404	1293	890	240	248
090E	1410	1353	1170	1050	1350	430	478	1293	990	280	290
105E	1410	1553	1170	1050	1350	430	478	1493	990	308	317
120E	1460	1703	1170	1050	1400	557	478	1643	990	324	337
135E	1360	1953	1170	1050	1300	1040	404	1893	990	425	434
150E	1360	1953	1270	1150	1300	1040	404	1893	1090	424	436
180E	1510	2153	1320	1200	1450	1203	478	2093	1140	498	519
210E	1510	2353	1370	1250	1450	1203	478	2293	1190	542	563
240E	1510	2653	1370	1250	1450	1572	478	2593	1190	596	620
270E	1510	2653	1500	1380	1450	1572	478	2593	1320	675	702
300E	1560	2653	1620	1500	1500	1572	478	2593	1440	709	735

★ Note:

1. If an external primary plate slide rail is used, dimension A in the table needs to be increased by 40 mm.

Mixing + primary filter + medium efficiency filter + fan

Model TAD	А	В	С	D	E	G	Н	K	L	Weight (kg)
020E	1540	853	690	570	1500	232	262	600	160	146
030E	1640	953	720	600	1600	298	262	600	300	163
040E	1640	1053	790	670	1600	331	289	700	300	187
050E	1640	1053	920	800	1600	309	341	800	300	210
060E	1640	1153	990	870	1600	395	341	900	300	235
070E	1740	1203	1070	950	1700	373	404	1000	300	258
080E	1740	1353	1070	950	1700	373	404	1100	300	287
090E	1990	1353	1170	1050	1950	430	478	1000	440	305
105E	1990	1553	1170	1050	1950	430	478	1100	440	360
120E	2040	1703	1170	1050	2000	557	478	1200	440	374
135E	1940	1953	1170	1050	1900	1040	404	1300	440	467
150E	1940	1953	1270	1150	1900	1040	404	1500	440	513
180E	2090	2153	1320	1200	2050	1203	478	1700	440	570
210E	2090	2353	1370	1250	2050	1203	478	1900	440	621
240E	2090	2653	1370	1250	2050	1572	478	2200	440	682
270E	2290	2653	1500	1380	2250	1572	478	2200	580	806
300E	2340	2653	1620	1500	2300	1572	478	2300	580	840

★ Note:

1. The above specifications are dimensions of the TAD unit, and those of the TBD units A, B, C, D, and E need to be increased by 50 mm each.

2. The standard primary filter is a G3 plate filter, and G4 filter can be used. The standard medium efficiency filter is an M5 bag filter, and M6 or M7 filter or a high-medium efficiency anti-bacterial bag filter can be used.

Air inlet + fan

Horizontal-type standard unit 10

Model TAD	А	В	С	D	E	G	Н	K	L	Weight (kg)
020E	640	853	690	570	600	232	262	600	160	125
030E	640	953	720	600	600	298	262	600	300	148
040E	640	1053	790	670	600	331	289	700	300	167
050E	740	1053	920	800	700	309	341	800	300	186
060E	740	1153	920	800	700	395	341	900	300	211
070E	840	1203	1020	900	800	373	404	1000	300	242
080E	840	1353	1020	900	800	373	404	1100	300	256
090E	940	1353	1170	1050	900	430	478	1000	440	299
105E	940	1353	1170	1050	900	430	478	1100	440	325
120E	940	1703	1170	1050	900	557	478	1200	440	350
135E	840	1953	1020	900	800	1040	404	1300	440	442
150E	840	1953	1020	900	800	1040	404	1500	440	447
180E	940	2153	1170	1050	900	1203	478	1700	440	539
210E	940	2353	1170	1050	900	1203	478	1900	440	584
240E	940	2653	1170	1050	900	1572	478	2200	440	644
270E	940	2653	1170	1050	900	1572	478	2200	580	728
300E	940	2653	1170	1050	900	1572	478	2300	580	761

★ Note:

1. The above specifications are dimensions of the TAD unit, and those of the TBD units A, B, C, D, and E need to be increased by 50 mm each.

TICA 20

Options

Customizable ESP

Vertical-type standard unit

Model		Rows of			Motor I	Power (kW) Correspo	onding to E	xternal Sta	atic Pressu	ire (Pa)		
TAD	(m ³ /h)	Cooling Coils	120	170	220	270	320	370	420	470	520	570	620
020E	2000	4	0.55	0.55	0.55	0.55	0.55						
020L	2000	6	0.55	0.55	0.55	0.55	0.75						
030E	3000	4	0.55	0.75	0.75	0.75	1.1						
030L	5000	6	0.75	0.75	0.75	1.1	1.1						
040E	4000	4	1.1	1.1	1.1	1.1	1.1	1.5					
040L	4000	6	1.1	1.1	1.1	1.1	1.5	1.5					
050E	5000	4	1.1	1.1	1.1	1.5	1.5	1.5					
	0000	6	1.1	1.1	1.5	1.5	1.5	1.5					
060F	6000	4	1.5	1.5	1.5	2.2	2.2	2.2					
0002	0000	6	1.5	1.5	2.2	2.2	2.2	2.2					
070F	7000	4	1.5	1.5	1.5	2.2	2.2	2.2	2.2				
0102	1000	6	1.5	1.5	2.2	2.2	2.2	2.2	2.2				
080F	8000	4	2.2	2.2	2.2	2.2	2.2	3.0	3.0				
	0000	6	2.2	2.2	2.2	2.2	3.0	3.0	3.0				
090F	9000	4	2.2	2.2	2.2	2.2	3.0	3.0	3.0				
		6	2.2	2.2	2.2	3.0	3.0	3.0	3.0				
105E	10500	4	2.2	3.0	3.0	3.0	3.0	3.0	4.0				
	10000	6	3.0	3.0	3.0	3.0	3.0	4.0	4.0				
120F	12000	4	2.2	3.0	3.0	3.0	3.0	4.0	4.0	4.0	4.0		
		6	3.0	3.0	3.0	3.0	4.0	4.0	4.0	4.0	5.5		
135E	13500	4	3.0	3.0	3.0	4.0	4.0	4.0	4.0	5.5	5.5		L
		6	3.0	3.0	4.0	4.0	4.0	4.0	5.5	5.5	5.5		
150F	15000	4	3.0	4.0	4.0	4.0	5.5	5.5	5.5	5.5	5.5		
		6	4.0	4.0	4.0	5.5	5.5	5.5	5.5	5.5	7.5		
180E	18000	4			5.5	5.5	5.5	5.5	7.5	7.5	7.5		
		6			5.5	5.5	5.5	7.5	7.5	7.5	7.5		
210E	21000	4			5.5	7.5	7.5	7.5	7.5	11.0	11.0		
		6			7.5	7.5	7.5	7.5	11.0	11.0	11.0		
240E	24000	4			5.5	7.5	7.5	7.5	11.0	11.0	11.0	11.0	
		6			7.5	7.5	7.5	11.0	11.0	11.0	11.0	11.0	
270E	27000	4			7.5	7.5	11.0	11.0	11.0	11.0	11.0	11.0	15.0
		6			7.5	11.0	11.0	11.0	11.0	11.0	11.0	15.0	15.0
300E	30000	4			11.0	11.0	11.0	11.0	11.0	15.0	15.0	15.0	15.0
		6			11.0	11.0	11.0	11.0	15.0	15.0	15.0	15.0	45.0
330E	33000	4			11.0	11.0	11.0	11.0	15.0	15.0	15.0	15.0	15.0
		6			11.0	11.0	11.0	15.0	15.0	15.0	15.0	15.0	15.0
350E	35000	4			11.0	11.0	11.0	11.0	11.0	15.0	15.0	15.0	15.0
		6			11.0	11.0	11.0	11.0	15.0	15.0	15.0	15.0	15.0
400E	40000	4				11.0	15.0	15.0	15.0	15.0	15.0	18.5	18.5
		6				15.0	15.0	15.0	15.0	15.0	18.5	18.5	18.5
450E	45000	4				15.0	15.0	15.0	18.5	18.5	18.5	18.5	22.0
		6				15.0	15.0	18.5	18.5	18.5	18.5	22.0	22.0
500E	50000	4				18.5	18.5	18.5	22.0	22.0	22.0		
		6				18.5	18.5	22.0	22.0	22.0			l .

★ Note:

1. The specifications in the table are powers corresponding to external static pressures of vertical-type standard unit 1.

2. The power of vertical-type standard unit 2 corresponds to the power when the external static pressure is 120 Pa.

3. The power of vertical-type standard unit 3 corresponds to the power when the external static pressure is 170 Pa.

Horizontal-type standard unit 1

	Air Flow	Rows of		M	otor Power (I	kW) Corresp	onding to Ex	cternal Statio	Pressure (F	Pa)	
Model TAD	(m^{3}/h)	Cooling Coils	170	220	270	320	370	420	470	520	570
		4	0.55	0.55	0.55	0.55	0.75				
020E	2000	6	0.55	0.55	0.55	0.75	0.75				
		4	0.75	0.75	0.75	1.1	1.1				
030E	3000	6	0.75	0.75	1.1	1.1	1.1				
	(000	4	1.1	1.1	1.1	1.1	1.5				
040E	4000	6	1.1	1.1	1.1	1.5	1.5				
0505	5000	4		1.1	1.5	1.5	1.5	1.5	2.2		
050E	5000	6		1.5	1.5	1.5	1.5	2.2	2.2		
0005	0000	4		1.5	2.2	2.2	2.2	2.2	2.2		
060E	6000	6		2.2	2.2	2.2	2.2	2.2	3.0		
		4		1.5	2.2	2.2	2.2	2.2	2.2		
070E	7000	6		2.2	2.2	2.2	2.2	2.2	3.0		
0005	0000	4		2.2	2.2	2.2	3.0	3.0	3.0		
080E	8000	6		2.2	2.2	3.0	3.0	3.0	3.0		
0005	0000	4		2.2	2.2	3.0	3.0	3.0	3.0		
090E	9000	6		2.2	3.0	3.0	3.0	3.0	4.0		
4055	10500	4		3.0	3.0	3.0	3.0	4.0	4.0		
105E	10500	6		3.0	3.0	3.0	4.0	4.0	4.0		
1005	10000	4		3.0	3.0	3.0	4.0	4.0	4.0		
120E	12000	6		3.0	3.0	4.0	4.0	4.0	4.0		
4055	40500	4		3.0	4.0	4.0	4.0	4.0	5.5		
135E	13500	6		4.0	4.0	4.0	4.0	5.5	5.5		
4505	45000	4		4.0	4.0	5.5	5.5	5.5	5.5	5.5	
190E	15000	6		4.0	5.5	5.5	5.5	5.5	5.5	7.5	
100	19000	4		5.5	5.5	5.5	5.5	7.5	7.5	7.5	
IOUE	16000	6		5.5	5.5	5.5	7.5	7.5	7.5	7.5	
210E	21000	4		5.5	7.5	7.5	7.5	7.5	11.0	11.0	
2100	21000	6		7.5	7.5	7.5	7.5	11.0	11.0	11.0	
240E	24000	4		5.5	7.5	7.5	7.5	11.0	11.0	11.0	
240L	24000	6		7.5	7.5	7.5	11.0	11.0	11.0	11.0	
270E	27000	4		7.5	7.5	11.0	11.0	11.0	11.0	11.0	11.0
2700	27000	6		7.5	11.0	11.0	11.0	11.0	11.0	11.0	15.0
300E	30000	4		11.0	11.0	11.0	11.0	11.0	15.0	15.0	15.0
300L	30000	6		11.0	11.0	11.0	11.0	15.0	15.0	15.0	15.0
330E	33000	4				11.0	11.0	15.0	15.0	15.0	
JUDE	00000	6				11.0	15.0	15.0	15.0	15.0	
350E	35000	4				11.0	11.0	11.0	15.0	15.0	
000L	00000	6				11.0	11.0	15.0	15.0	15.0	
400F	40000	4				15.0	15.0	15.0	15.0	15.0	
TOOL	+0000	6				15.0	15.0	15.0	15.0	18.5	
450E	45000	4				15.0	15.0	18.5	18.5	18.5	
4JUE	43000	6				15.0	18.5	18.5	18.5	18.5	
5000	50000	4				18.5	18.5	22.0	22.0	22.0	
JUUE	50000	6				18.5	22.0	22.0	22.0		
6005	60000	4					18.5	18.5	18.5	22.0	22.0
JUUE	00000	6					18.5	18.5	22.0	22.0	

Horizontal-type standard unit 2/Horizontal-type standard unit 4

	Air Flow	Rows of		Mo	otor Power (I	(W) Corresp	onding to Ex	ternal Static	Pressure (F	Pa)	
Model IAD	(m ³ /h)	Cooling Coils	170	220	270	320	370	420	470	520	570
0005	2000	4	0.55	0.55	0.75	0.75	0.75				
020E	2000	6	0.55	0.75	0.75	0.75	0.75				
0205	2000	4	0.75	0.75	1.1	1.1	1.1				
030E	3000	6	0.75	1.1	1.1	1.1	1.1				
0405	4000	4	1.1	1.1	1.1	1.5	1.5				
040E	4000	6	1.1	1.1	1.5	1.5	1.5				
0505	5000	4	1.1	1.5	1.5	1.5	1.5				
UJUL	3000	6	1.5	1.5	1.5	1.5	2.2				
0605	6000	4	1.5	2.2	2.2	2.2	2.2	2.2			
000L	0000	6	2.2	2.2	2.2	2.2	2.2	3.0			
070E	7000	4	1.5	2.2	2.2	2.2	2.2	2.2			
070L	7000	6	2.2	2.2	2.2	2.2	2.2	3.0			
080E	8000	4		2.2	2.2	3.0	3.0	3.0	3.0		
000L	0000	6		2.2	3.0	3.0	3.0	3.0	3.0		
090F	9000	4		2.2	3.0	3.0	3.0	3.0	4.0		
000L	5000	6		3.0	3.0	3.0	3.0	4.0	4.0		
105E	10500	4		3.0	3.0	4.0	4.0	4.0	4.0		
	10000	6		3.0	4.0	4.0	4.0	4.0	4.0		
120E	12000	4		3.0	3.0	4.0	4.0	4.0	5.5		
	12000	6		3.0	4.0	4.0	4.0	5.5	5.5		
135E	13500	4		4.0	4.0	4.0	4.0	5.5	5.5		
1002	10000	6		4.0	4.0	4.0	5.5	5.5	5.5		
150E	15000	4			5.5	5.5	5.5	5.5	5.5	7.5	
	10000	6			5.5	5.5	5.5	5.5	7.5	7.5	
180E	18000	4			5.5	5.5	7.5	7.5	7.5	7.5	
		6			5.5	7.5	7.5	7.5	7.5	7.5	
210E	21000	4			7.5	7.5	7.5	11.0	11.0	11.0	
		6			7.5	7.5	11.0	11.0	11.0	11.0	
240E	24000	4				7.5	11.0	11.0	11.0	11.0	
		6				11.0	11.0	11.0	11.0	11.0	
270E	27000	4				11.0	11.0	11.0	11.0	11.0	
		6				11.0	11.0	11.0	11.0	15.0	
300E	30000	4				11.0	11.0	15.0	15.0	15.0	
		6				11.0	15.0	15.0	15.0	15.0	
330E	33000	4				11.0	15.0	15.0	15.0	15.0	15.0
		6				15.0	15.0	15.0	15.0	15.0	15.0
350E	35000	4				11.0	15.0	15.0	15.0	15.0	15.0
		6				15.0	15.0	15.0	15.0	15.0	15.0
400E	40000	4					15.0	15.0	15.0	18.5	18.5
		6					15.0	15.0	18.5	18.5	18.5
450E	45000	4					18.5	18.5	18.5	18.5	22.0
-		6					18.5	18.5	18.5	22.0	22.0
500E	50000	4					22.0	22.0	22.0		
		6					22.0	22.0			
600E	60000	4					18.5	18.5	22.0	22.0	30.0
		6					18.5	22.0	22.0	30.0	

Horizontal-type standard unit 3/Horizontal-type standard unit 5

Model TAD Cooling (mith) T20 T0 Z20 Z70 320 370 420 470 520 020E 2000 4 0.55 0.75 0.75 0.75 1.1 1.1 1.1 1.1 030E 3000 4 0.75 1.1 1.5 1.5 2.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		Air Elow	Rows of		M	otor Power (kW) Corresp	onding to E	xternal Statio	Pressure (I	Pa)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Model TAD	(m ³ /h)	Cooling Coils	120	170	220	270	320	370	420	470	520
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	020E	2000	4	0.55	0.75	0.75	0.75	0.75	1.1	1.1	1.1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	020L	2000	6	0.75	0.75	0.75	0.75	1.1	1.1	1.1	1.1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	030E	3000	4	0.75	1.1	1.1	1.1	1.1	1.1	1.5	1.5	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	030L	5000	6	1.1	1.1	1.1	1.1	1.1	1.5	1.5		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0405	4000	4	1.1	1.1	1.5	1.5	1.5	2.2	2.2	2.2	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	040	4000	6	1.1	1.5	1.5	1.5	2.2	2.2	2.2	2.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0505	5000	4	1.5	1.5	1.5	1.5	2.2	2.2	2.2	2.2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0302	5000	6	1.5	1.5	1.5	2.2	2.2	2.2	2.2	2.2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0605	6000	4	2.2	2.2	2.2	2.2	2.2	3.0	3.0	3.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	000E	0000	6	2.2	2.2	2.2	2.2	3.0	3.0	3.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0705	7000	4		2.2	2.2	2.2	2.2	3.0	3.0	3.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	070E	7000	6		2.2	2.2	2.2	3.0	3.0	3.0	3.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0005	8000	4		2.2	3.0	3.0	3.0	3.0	3.0	4.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	UOUE	0000	6		3.0	3.0	3.0	3.0	3.0	4.0	4.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0005	0000	4				3.0	3.0	4.0	4.0	4.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	090E	9000	6				3.0	4.0	4.0	4.0	4.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4055	40500	4				4.0	4.0	4.0	4.0	5.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TUDE	10500	6				4.0	4.0	4.0	5.5	5.5	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1005	40000	4				4.0	4.0	5.5	5.5	5.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	120E	12000	6				4.0	5.5	5.5	5.5	5.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4055	12500	4				4.0	5.5	5.5	5.5	5.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	135E	13500	6				5.5	5.5	5.5	5.5	7.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4505	45000	4				5.5	5.5	5.5	7.5	7.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	150E	15000	6				5.5	5.5	7.5	7.5	7.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1005	40000	4				7.5	7.5	7.5	7.5	7.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	180E	18000	6				7.5	7.5	7.5	7.5	11.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0405	04000	4				7.5	11.0	11.0	11.0	11.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	210E	21000	6				11.0	11.0	11.0	11.0	11.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.405	0.4000	4				11.0	11.0	11.0	11.0	11.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	240E	24000	6				11.0	11.0	11.0	11.0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0705	07000	4				11.0	11.0	11.0	11.0	15.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	270E	27000	6				11.0	11.0	11.0	15.0	15.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0005	00000	4				11.0	15.0	15.0	15.0	15.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	300E	30000	6				15.0	15.0	15.0	15.0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0005	00000	4				15.0	15.0	15.0	15.0	15.0	15.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	330E	33000	6				15.0	15.0	15.0	15.0	15.0	18.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0505	05000	4				15.0	15.0	15.0	15.0	15.0	15.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	350E	35000	6				15.0	15.0	15.0	15.0	15.0	18.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(0000	4				15.0	15.0	15.0	18.5	18.5	18.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	400E	40000	6				15.0	15.0	18.5	18.5	18.5	18.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4505	45000	4				18.5	18.5	18.5	18.5	22.0	22.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	450E	45000	6				18.5	18.5	18.5	22.0	22.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			4				22.0	22.0	22.0			
600E 4 18.5 18.5 22.0 22.0 30.0 30.0 6 18.5 22.0 22.0 30.0 30.0	500E	50000	6				22.0	22.0				
600E 60000 6 18.5 22.0 22.0 30.0 30.0			4				18.5	18.5	22.0	22.0	30.0	30.0
	600E	60000	6				18.5	22.0	22.0	30.0	30.0	

model no.model no. <th></th> <th>Air Flow</th> <th>Rows of</th> <th></th> <th>Mo</th> <th>otor Power (I</th> <th>(W) Corresp</th> <th>onding to E</th> <th>ternal Statio</th> <th>Pressure (F</th> <th>Pa)</th> <th></th>		Air Flow	Rows of		Mo	otor Power (I	(W) Corresp	onding to E	ternal Statio	Pressure (F	Pa)	
D2DE 2000 4 0.65 0.75 1.1 <	Model IAD	(m³/h)	Cooling	140	190	240	290	340	390	440	490	540
1000 6 0.85 0.75 0.			4	0.55	0.55	0.75	0.75	0.75				
3000 4 0.75 1.1 1.5 <th1.6< th=""> <th1.6< th=""> <th1.6< th=""></th1.6<></th1.6<></th1.6<>	020E	2000	6	0.55	0.75	0.75	0.75	0.75				
030e 3000 6 0.76 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.5 <td></td> <td></td> <td>4</td> <td>0.75</td> <td>0.75</td> <td>1.1</td> <td>1.1</td> <td>1.1</td> <td></td> <td></td> <td></td> <td></td>			4	0.75	0.75	1.1	1.1	1.1				
4000 4 1.1 1.1 1.5 1.5 1.5 1.6 1.6 1.6 0500 3000 4 1.1 1.5 1.5 1.5 1.5 1.6 1.6 1.6 0600 60 1.5 1.5 1.5 1.5 2.2 3.0	030E	3000	6	0.75	1.1	1.1	1.1	1.1				
4000 6 1.1 1.1 1.5 2.2 3.0		1000	4	1.1	1.1	1.1	1.5	1.5				
book 4 1.1 1.5 1.5 1.5 1.5 2.2 1.4 0600 6000 4 1.5 2.2 3.0 <td>040E</td> <td>4000</td> <td>6</td> <td>1.1</td> <td>1.1</td> <td>1.5</td> <td>1.5</td> <td>1.5</td> <td></td> <td></td> <td></td> <td></td>	040E	4000	6	1.1	1.1	1.5	1.5	1.5				
090E 5000 6 1.5 1.5 1.5 2.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 <td></td> <td></td> <td>4</td> <td>1.1</td> <td>1.5</td> <td>1.5</td> <td>1.5</td> <td>1.5</td> <td></td> <td></td> <td></td> <td></td>			4	1.1	1.5	1.5	1.5	1.5				
0000 4 1.5 2.2 2.2 2.2 2.2 3.0 070E 7000 6 2.2 2.2 2.2 2.2 3.0 070E 7000 6 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 3.0 080E 8000 4 2.2 2.2 3.0	050E	5000	6	1.5	1.5	1.5	1.5	2.2				
000e 6000 6 2.2 2.2 2.2 2.2 3.0 070E 7000 6 2.2 3.0 4.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	0005		4	1.5	2.2	2.2	2.2	2.2	2.2			
070E 7000 4 15 22 22 22 22 22 23 30 50 080E 8000 6 2.2 2.2 2.2 3.0 3.0 3.0 3.0 080E 9000 6 2.2 3.0 3.0 3.0 3.0 3.0 3.0 0900 6 2.2 3.0 3.0 3.0 3.0 4.0 4.0 1050 6 3.0 3.0 3.0 4.0 5.5 7.5 7.5 </td <td>060E</td> <td>6000</td> <td>6</td> <td>2.2</td> <td>2.2</td> <td>2.2</td> <td>2.2</td> <td>2.2</td> <td>3.0</td> <td></td> <td></td> <td></td>	060E	6000	6	2.2	2.2	2.2	2.2	2.2	3.0			
0/0E 7/00 6 2.2 2.2 2.2 3.0 080E 8000 4 2.2 2.2 3.0 3.0 3.0 3.0 080E 9000 6 2.2 3.0 3.0 3.0 3.0 3.0 080E 9000 6 3.0 3.0 3.0 3.0 4.0 4.0 105E 10500 4 3.0 3.0 4.0 4.0 4.0 4.0 120E 12000 4 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.5			4	1.5	2.2	2.2	2.2	2.2	2.2			
080E 8000 4 2.2 2.2 3.0 3.0 3.0 3.0 080E 9000 4 2.2 3.0 3.0 3.0 3.0 3.0 080E 9000 6 3.0 3.0 3.0 3.0 3.0 4.0 4.0 105E 0500 6 3.0 3.0 4.0 4.0 4.0 4.0 105E 0500 6 3.0 3.0 4.0 4.0 4.0 4.0 105E 0500 6 3.0 4.0 4.0 4.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 7.5	070E	7000	6	2.2	2.2	2.2	2.2	2.2	3.0			
080e 8000 6 2.2 3.0 4.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 <td></td> <td></td> <td>4</td> <td></td> <td>2.2</td> <td>2.2</td> <td>3.0</td> <td>3.0</td> <td>3.0</td> <td>3.0</td> <td></td> <td></td>			4		2.2	2.2	3.0	3.0	3.0	3.0		
9000 4 2.2 3.0 3.0 3.0 4.0 105E 10500 4 3.0 3.0 3.0 4.0 4.0 4.0 105E 10500 4 3.0 3.0 4.0 4.0 4.0 4.0 4.0 120E 12000 4 3.0 3.0 4.0 4.0 4.0 5.5 5.5 135E 13500 6 4.0 4.0 4.0 4.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 7.5	080E	8000	6		2.2	3.0	3.0	3.0	3.0	3.0		
090e 9000 6 3.0 3.0 3.0 4.0 4.0 4.0 105E 10500 4 3.0 3.0 4.0 5.5 5.5 5.5 5.5 5.5 7.5		00000	4		2.2	3.0	3.0	3.0	3.0	4.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	090E	9000	6		3.0	3.0	3.0	3.0	4.0	4.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4		3.0	3.0	4.0	4.0	4.0	4.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	105E	10500	6		3.0	4.0	4.0	4.0	4.0	4.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4		3.0	3.0	4.0	4.0	4.0	5.5		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	120E	12000	6		3.0	4.0	4.0	4.0	5.5	5.5		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4		4.0	4.0	4.0	4.0	5.5	5.5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	135E	13500	6		4.0	4.0	4.0	5.5	5.5	5.5		
150e 1500 6 5.5 5.5 5.5 7.5 7.5 7.5 180E 18000 6 5.5 5.5 7.5			4			5.5	5.5	5.5	5.5	5.5	7.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	150E	15000	6			5.5	5.5	5.5	5.5	7.5	7.5	
$ \begin{array}{ c c c c c c c c } \hline 1800 & \hline 6 & \hline 6 & \hline 5.5 & 7.5 & 7.5 & 7.5 & 7.5 & 7.5 & 7.5 & 7.5 \\ \hline 210E & 2100 & \hline 4 & \hline 7.5 & 7.5 & 7.5 & 11.0 & 11.0 & 11.0 & 11.0 \\ \hline 6 & \hline 7.5 & 7.5 & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 \\ \hline 6 & \hline 7.5 & 7.5 & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 \\ \hline 6 & \hline 6 & \hline 7.5 & 7.5 & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 \\ \hline 7.5 & 7.5 & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 \\ \hline 6 & \hline 6 & \hline 7.5 & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 \\ \hline 7.5 & 7.5 & 11.0 & 15.0 & 15.$		10000	4			5.5	5.5	7.5	7.5	7.5	7.5	
210E 21000 4 7.5 7.5 7.5 11.0 11.0 11.0 $240E$ 24000 4 7.5 7.5 11.0	180E	18000	6			5.5	7.5	7.5	7.5	7.5	7.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0405	04000	4			7.5	7.5	7.5	11.0	11.0	11.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	210E	21000	6			7.5	7.5	11.0	11.0	11.0	11.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.405	0.4000	4				7.5	11.0	11.0	11.0	11.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	240E	24000	6				11.0	11.0	11.0	11.0	11.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0705	07000	4				11.0	11.0	11.0	11.0	11.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	270E	27000	6				11.0	11.0	11.0	11.0	15.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0005	00000	4				11.0	11.0	15.0	15.0	15.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	300E	30000	6				11.0	15.0	15.0	15.0	15.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2205	22000	4				11.0	15.0	15.0	15.0	15.0	15.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	330E	33000	6				15.0	15.0	15.0	15.0	15.0	15.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2505	25000	4				11.0	15.0	15.0	15.0	15.0	15.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	350E	30000	6				15.0	15.0	15.0	15.0	15.0	15.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4005	40000	4					15.0	15.0	15.0	18.5	18.5
450E 4 18.5 18.5 18.5 18.5 22.0 6 6 18.5 18.5 18.5 22.0 2.0	400E	40000	6					15.0	15.0	18.5	18.5	18.5
450E 45000 6 18.5 18.5 18.5 22.0 22.0 500E 50000 6 6 22.0 22.0 22.0 22.0 22.0	4505	45000	4					18.5	18.5	18.5	18.5	22.0
500E 4 22.0 22.0 22.0 6 22.0 22.0 22.0 22.0	450E	45000	6					18.5	18.5	18.5	22.0	22.0
SUUE SUUU 6 22.0 22.0	5005	50000	4					22.0	22.0	22.0		
	300E	50000	6					22.0	22.0			

Horizontal-type standard unit 8

Model TAD	Air Flow	Number	Motor Power (kW) Corresponding to External Static Pressure (Pa)									
WOULD TAD	(m³/h)	Rows	250	300	350	400	450	500	550	600	650	
0005	0000	1	0.55	0.55	0.55	0.55	0.75					
020E	2000	2	0.55	0.55	0.55	0.75	0.75					
		1	0.75	0.75	0.75	1.1	1.1					
030E	3000	2	0.75	0.75	0.75	1.1	1.1					
0.405	1000	1	1.1	1.1	1.1	1.1	1.5					
040E	4000	2	1.1	1.1	1.1	1.1	1.5					
0505	5000	1		1.1	1.5	1.5	1.5	1.5	2.2			
050E	5000	2		1.1	1.5	1.5	1.5	1.5	2.2			
0005	0000	1		1.5	2.2	2.2	2.2	2.2	2.2			
060E	6000	2		1.5	2.2	2.2	2.2	2.2	2.2			
0705	7000	1		1.5	2.2	2.2	2.2	2.2	2.2			
070E	7000	2		1.5	2.2	2.2	2.2	2.2	2.2			
0005	0000	1		2.2	2.2	2.2	3.0	3.0	3.0			
080E	8000	2		2.2	2.2	2.2	3.0	3.0	3.0			
0005	0000	1		2.2	2.2	3.0	3.0	3.0	3.0			
090E	9000	2		2.2	2.2	3.0	3.0	3.0	3.0			
4055	40500	1		3.0	3.0	3.0	3.0	4.0	4.0			
TUSE	10500	2		3.0	3.0	3.0	4.0	4.0	4.0			
4005	40000	1		3.0	3.0	3.0	4.0	4.0	4.0			
120E	12000	2		3.0	3.0	3.0	4.0	4.0	4.0			
4055	40500	1		3.0	4.0	4.0	4.0	4.0	5.5			
135E	13500	2		3.0	4.0	4.0	4.0	4.0	5.5			
4505	45000	1		4.0	4.0	5.5	5.5	5.5	5.5	5.5		
IDUE	10000	2		4.0	4.0	5.5	5.5	5.5	5.5	5.5		
4005	40000	1		5.5	5.5	5.5	5.5	7.5	7.5	7.5		
IOUE	10000	2		5.5	5.5	5.5	5.5	7.5	7.5	7.5		
2105	21000	1		5.5	7.5	7.5	7.5	7.5	11.0	11.0		
ZIUE	21000	2		5.5	7.5	7.5	7.5	7.5	11.0	11.0		
2405	24000	1		5.5	7.5	7.5	7.5	11.0	11.0	11.0		
240E	24000	2		5.5	7.5	7.5	7.5	11.0	11.0	11.0		
2705	27000	1		7.5	7.5	11.0	11.0	11.0	11.0	11.0	11.0	
ZIUE	21000	2		7.5	7.5	11.0	11.0	11.0	11.0	11.0	11.0	
2005	20000	1		11.0	11.0	11.0	11.0	11.0	15.0	15.0	15.0	
JUUE	30000	2		11.0	11.0	11.0	11.0	11.0	15.0	15.0	15.0	

Model TAD	Air Flow		Mot	or Power (kW)	Corresponding	g to External S	tatic Pressure	(Pa)	
WOULD TAD	(m³/h)	220	270	320	370	420	470	520	570
020E	2000	0.55	0.75	0.75	0.75	0.75	1.1	1.1	1.1
030E	3000	0.75	1.1	1.1	1.1	1.1	1.1	1.5	1.5
040E	4000	1.1	1.1	1.5	1.5	1.5	2.2	2.2	2.2
050E	5000	1.5	1.5	1.5	1.5	2.2	2.2	2.2	2.2
060E	6000	2.2	2.2	2.2	2.2	2.2	3.0	3.0	3.0
070E	7000		2.2	2.2	2.2	2.2	3.0	3.0	3.0
080E	8000		2.2	3.0	3.0	3.0	3.0	3.0	4.0
090E	9000				3.0	3.0	4.0	4.0	4.0
105E	10500				4.0	4.0	4.0	4.0	5.5
120E	12000				4.0	4.0	5.5	5.5	5.5
135E	13500				4.0	5.5	5.5	5.5	5.5
150E	15000				5.5	5.5	5.5	7.5	7.5
180E	18000				7.5	7.5	7.5	7.5	7.5
210E	21000				7.5	11.0	11.0	11.0	11.0
240E	24000				11.0	11.0	11.0	11.0	11.0
270E	27000				11.0	11.0	11.0	11.0	15.0
300E	30000				11.0	15.0	15.0	15.0	15.0

Horizontal-type standard unit 10

Model TAD	Air Flow			Motor Power	(kW) Corresp	onding to Ex	ternal Static F	Pressure (Pa)		
WOULD IND	(m³/h)	240	290	340	390	440	490	540	590	640
020E	2000	0.55	0.55	0.55	0.55	0.75				
030E	3000	0.55	0.75	0.75	0.75	1.1				
040E	4000	1.1	1.1	1.1	1.1	1.1				
050E	5000		1.1	1.1	1.5	1.5	1.5	1.5		
060E	6000		1.5	1.5	2.2	2.2	2.2	2.2		
070E	7000		1.5	1.5	2.2	2.2	2.2	2.2		
080E	8000		2.2	2.2	2.2	2.2	3.0	3.0		
090E	9000		2.2	2.2	2.2	3.0	3.0	3.0		
105E	10500		3.0	3.0	3.0	3.0	4.0	4.0		
120E	12000		3.0	3.0	3.0	3.0	4.0	4.0		
135E	13500		3.0	3.0	4.0	4.0	4.0	4.0		
150E	15000		4.0	4.0	4.0	5.5	5.5	5.5	5.5	
180E	18000		4.0	5.5	5.5	5.5	5.5	7.5	7.5	
210E	21000		5.5	5.5	7.5	7.5	7.5	7.5	11.0	
240E	24000		5.5	5.5	7.5	7.5	7.5	11.0	11.0	
270E	27000		7.5	7.5	7.5	11.0	11.0	11.0	11.0	11.0
300E	30000		11.0	11.0	11.0	11.0	11.0	11.0	15.0	15.0

Options-Humidifier

Wet film humidifier

A wet film humidifier is a kind of hydrophilic material. It can evenly distribute the absorbed water on its surface to form a vaporized layer of water. When air flows over the surface of the material, water in the vaporization layer is vaporized and absorbed into the air. According to this principle, a vaporization humidifier is made. The thickness of the wet film is selected based on the demand for humidification, and the water supply is three times the humidification volume.

Operating conditions

Ambient temperature and humidity	Humidifier temperature
Critical wind speed	smaller than 3.75 m/s
Water supply quality	tap water, purified wat
Water supply status	0.05–0.4 MPa, 5–40°C
Water supply volume	2–3 times of humidification
Power supply	AC 220 V/50 Hz

Wet film humidifier performance specifications of the unit

Model	Air Flow	Wet Film	Face Size	Ν	Maximum Humidify	ing Capacity (kg/h)
Model	m³/h	Height (mm)	Width (mm)	50 mm	100 mm	150 mm	200 mm
020	2000	401	680	5	11	14	15
030	3000	492	780	8	15	19	21
040	4000	543	870	9	19	24	26
050	5000	695	870	12	24	30	33
060	6000	756	970	15	29	37	40
070	7000	807	1010	16	33	41	45
080	8000	807	1160	19	37	47	51
090	9000	909	1160	21	42	53	58
105	10500	909	1360	25	49	62	68
120	12000	909	1510	27	55	69	75
135	13500	909	1750	32	64	80	87
150	15000	1010	1750	35	71	88	97
180	18000	1061	1950	41	83	103	114
210	21000	1112	2140	48	95	119	131
240	24000	1112	2440	54	109	136	149
270	27000	1213	2440	59	118	148	163
300	30000	1359	2440	66	133	166	182
330	33000	1359	2690	73	146	183	201
350	35000	1359	2840	77	154	193	212
400	40000	1572	2657	84	167	209	230
450	45000	1699	2757	94	187	234	258
500	50000	1874	2857	107	214	268	294
600	60000	2192	2957	130	259	324	356

★ Note:

1. When a unit is equipped with a wet film humidifier, the internal resistance of the unit should increase accordingly: 50 mm - 20 Pa, 100 mm - 30 Pa, 150 mm - 45 Pa, 200 mm - 60 Pa.

e: 5–80°C; below 90%RH

e

С

ation volume, external water source interface size DN15 G1/2

Air Handling Unit-Ceiling

TFD ceiling-type AHU is classified into three series of products: series B (direct drive), series D (belt drive), and series S (jet type). It uses 380V3N~50Hz three-phase AC power supply. The unit is mainly composed of filter, coil, and fan, and can meet requirements for different static pressures. The unit features compact structure, low weight, and excellent refrigeration performance. Hot water coil, electric controller, and other components can be provided as required by customers. The unit is applied to scenarios that need centralized air processing, for example, shopping malls, hotels, and office buildings.

The S series jet type AHU is the new type air handling unit that TICA developed for customers. The unit adopts the ceiling structure and high-performance spherical nozzle, and can implement remote direct air supply without the duct, which saves space, reduces layer height, and greatly lowers the one-time investment costs. The spherical air supply nozzle is adjustable in a certain range to ensure that the cold and hot air are sent to the specified location, thus creating a comfortable air-conditioning environment. This series of unit is applied to scenarios such as supermarkets, large-sized business buildings, factory workshops, stadiums, waiting halls, exhibition halls.

If the unit is installed near the sea shore, paper mill, steel mill, chemical plant, or other corrosive environment, please consult relevant plant(s) first in case that the corrosive environment may affect the operation stability of the unit.

Diagram of Left/Right Type Judgment of Unit

Facing the air flow, the unit is of left type if the water inlet and outlet are on the left. Otherwise, it is of right type.

Features & Advantages

Patent structure and low air leakage rate

Adopting TICA's patented labyrinth design, the aluminum profile and panel form a whole through highpressure polyurethane foam, and the aluminum profile is designed with a concave groove and a convex groove. A tenon is formed when the concave

groove and convex groove are joined. Thus, it implements strict labyrinth sealing together with fastening of bolts and nuts. The air leakage rate is only 1/66 of the national standard.

The full core heat exchanger achieves high heat exchange efficiency, temperature efficiency as high as 70% and enthalpy efficiency as high as 60%.

Safe and reliable

The direct driven fan does not require maintenance. Only the filter screen needs to be cleaned regularly.

High-efficiency heat exchanger

The heat exchanger is designed using the professional model selection software certified by AHRI to ensure that model parameters are consistent with performance of the actual heat exchanger and the heat exchanger can address model selection requirements of customers in different operating conditions. The coil is integrated with quality RoHS-certified copper tubes and Hydrophilic aluminum fin through the advanced mechanical expansion tube process. The coil passes air tightness test before delivery to ensure no leakage.

Elimination of cold bridge and rust

All the metals in the cabinet of TICA's labyrinth AHU are isolated from outside metals using polyurethane foam and specially designed sealing strips, avoiding the thermal insulation strips attached here and there inside the common AHU. Therefore, TICA's labyrinth AHU puts an

end to the cold bridge in a simple way. Aluminum profile frames are set around four sides of all the panels, so all the sheet metal edges and corners are isolated from air and moisture, avoiding rust spots on the panels.

Available in a wide range of series

TICA's plate-type heat recovery series are available in a wide range of specifications. and many types of static pressures are provided for each model.

Simple structure

The heat & energy recovery ventilator consists of the blower, discharge fan, platetype heat recovery core, and the filter. The heat & energy recovery ventilator products are classified into the ceilingmounted type, horizontal type, type with a cooling coil, type without a cooling coil, etc.

Nomenclature

<u>TFD</u>	<u>030</u> 	<u>G</u> <u>C</u> 	<u>L</u> <u>R</u> 	<u>H</u>	<u>1 24</u>	<u>W</u>	<u>B</u> 			
								- B-direct drive series (38	80V), D-belt	drive (380V)
								S-jet series (380V)		
								 Outside plate color 	W-white	
								- External total pressure	Unit × 10F	Pa (this character is omitted for a jet-type AHU)
								- Hot coil	1-1 row	2-2 row(replaced with N if there is none)
								- Cold coil	N-normal	cold H-highly cold
								Air inlet R: air return	F: fresh ai	r
								 Left/right type 	L: left	R: right
								 Structure type 	C-ceiling	
								- Design S/N	G	
								 Specification code 	Air flow sp	ecification X 100m3/h
								- Name code	TICA's AF	IU
TFD	<u>010</u> <u>F</u>	<u>C</u> L	<u>2</u>	<u>07</u> <u>1</u>	<u>1 J</u>					
								- Heat recovery J: F	ull heat rec	overy
								- Discharge static pressu	re 11-1	10Pa
								- Air supply static pressu	re 07-7	0Pa
								- Number of water coil ro	ws N: N	one; 2: Two rows; 4: Four rows
								 Left/right type of unit 	L: Le	ft type; R: Right type
								Structure type C:	Ceiling type	; H: Horizontal type
								Design S/N A、	B、C、	
								- Specification code Air	flow specifie	cation X 100 m3/h
								Name code TIC	A's AHU	

Technical Specifications

Direct Drive and Belt Drive Series

Return Air Condition

Madal			١	Vormal	Cold			I	Highly (Cold				
Model	Air Flow	Rated Cooling Capacity	Rated Heating Capacity	Water Flow	Water Resistance	Chilled Water Pipe Diameter	Rated Cooling Capacity	Rated Heating Capacity	Water Flow	Water Resistance	Chilled Water Pipe Diameter	Condensate Water Pipe Diameter	Power Supply	Drive Type
TFD	m³/h	kW	kW	l/s	kPa	DN	kW	kW	l/s	kPa	DN	DN		
010	1000	5.1	10.2	0.24	20.8	32	7.2	12.4	0.34	25.0	32	25		
015	1500	8.3	15.2	0.40	62.7	32	11.0	18.5	0.52	74.8	32	25		Direct
020	2000	11.5	21.2	0.55	59.2	32	14.9	25.3	0.71	84.9	32	25		drive
025	2500	14.4	26.0	0.69	41.4	32	18.2	30.8	0.87	71.3	32	25		
030	3000	17.5	32.0	0.83	63.8	32	22.0	37.3	1.05	76.2	32	25		
040	4000	23.4	41.5	1.13	89.7	32	30.1	49.1	1.43	87.1	32	25	380V	
050	5000	28.3	51.4	1.37	76.2	32	35.2	61.8	1.68	47.3	40	25	3 N -	
060	6000	34.5	61.7	1.64	86.4	32	43.7	73.9	2.08	76.0	40	25	50Hz	
070	7000	40.3	71.3	1.92	81.0	32	49.4	85.3	2.35	70.6	40	25		Belt drive
080	8000	46.2	83.1	2.20	81.2	32	57.6	98.3	2.74	89.9	40	25		
100	10000	59.9	108.1	2.85	88.9	40	75.1	135.3	3.58	55.8	50	25		
120	12000	69.3	131.7	3.30	89.8	40	85.8	161.1	4.09	76.9	50	25		
150	15000	85.3	162.8	4.06	89.8	50	108.5	189.7	5.17	77.5	50	32		

★ Note:

1. Cooling: The dry bulb temperature of inlet air is 27°C, the wet bulb temperature is 19.5°C, and the water inlet/outlet temperature is 7°C/12°C;

2. Heating: The dry bulb temperature of inlet air is 15°C, the hot water inlet/outlet temperature is 60°C/50°C.

3. The specifications are subject to change due to product improvement without prior notice.

4. The water volume in the above table indicates the cold water supply volume. Because the hot water supply volume is smaller than cold water supply volume, cold water supply volume is provided in the table for your reference to select the water pump.

Direct Drive and Belt Drive Series

Fresh Air Condition

			٩	lormal	Cold			I	Highly (Cold				
Model	Air flow	Rated Cooling Capacity"	Rated Heating Capacity	Water Flow	Water Resistance	Chilled Water Pipe Diameter	Rated Cooling Capacity	Rated Heating Capacity	Water Flow	Water Resistance	Chilled Water Pipe Diameter	Condensate Water Pipe Diameter	Power Supply	Drive Type
TFD	m³/h	kW	kW	l/s	kPa	DN	kW	kW	l/s	kPa	DN	DN		
010	1000	13.9	13.2	0.66	85.6	32	15.8	15.6	0.75	79.2	32	25		
015	1500	18.7	18.4	0.93	82.3	32	24.5	23.7	1.17	84.8	32	25		Direct
020	2000	27.0	27.5	1.29	84.8	32	31.2	31.3	1.49	64.6	32	25		drive
025	2500	30.8	31.8	1.47	76.2	32	40.3	39.3	1.92	83.9	32	25		
030	3000	39.9	40.9	1.90	87.0	32	45.8	45.1	2.18	80.5	32	25		
040	4000	49.7	51.1	2.37	79.9	32	63.8	61.8	3.04	66.3	40	25	380V	
050	5000	64.5	64.0	3.07	84.0	32	75.4	70.3	3.59	81.6	40	25	3 N -	
060	6000	72.7	75.5	3.46	38.5	50	92.6	91.9	4.41	80.5	40	25	50Hz	
070	7000	84.1	87.1	4.00	61.0	50	105.6	104.8	5.03	70.6	50	25		Belt drive
080	8000	99.0	101.7	4.71	87.7	50	120.7	119.7	5.75	85.7	50	25		
100	10000	133.1	133.3	6.34	50.6	65	160.2	157.9	7.63	60.2	65	25		
120	12000	149.4	155.1	7.12	69.1	65	185.2	180.4	8.20	82.1	65	25		
150	15000	184.2	200.2	8.77	69.1	65	244.7	237.1	10.65	82.1	65	32		

★ Note:

1. Cooling: The dry bulb temperature of inlet air is 35°C, the wet bulb temperature is 28°C, and the water inlet/outlet temperature is 7°C/12°C;

2. Heating: The dry bulb temperature of inlet air is 7°C, the hot water inlet/outlet temperature is 60°C/50°C.

3. The specifications are subject to change due to product improvement without prior notice.

4. The water volume in the above table indicates the cold water supply volume. Because the hot water supply volume is smaller than cold water supply volume, cold water supply volume is provided in the table for your reference to select the water pump.

Options

Customizable ESP

	Air Flow	Cooling	ng External Total Pressure (Pa)								
	(m³/h)	Coil	80	120	160	200	240	280	320	360	400
010	1000	N	0.18	0.18	0.25	0.32					
010	1000	Н	0.18	0.25	0.32	0.32					
045	4500	N		0.32	0.32	0.32	0.37	0.45			
015	1500	Н		0.32	0.32	0.37	0.45	0.45			
000	2000	N		0.32	0.32	0.37	0.37	0.45	0.45		
020	2000	Н		0.32	0.37	0.37	0.45	0.45	0.55		
005	0500	N		0.45	0.55	0.55	0.75	0.75	0.75		
025	2500	Н		0.55	0.55	0.75	0.75	0.75	0.75		
020	2000	N			0.55	0.75	0.75	0.75	0.75	1.1	1.1
030	3000	Н			0.75	0.75	0.75	0.75	1.1	1.1	1.1
0.40	4000	N			1.1	1.1	1.1	1.1	1.1	1.1	1.5
040	4000	Н			1.1	1.1	1.1	1.1	1.1	1.5	1.5
050	5000	N			1.1	1.1	1.1	1.1	1.5	1.5	1.5
050	5000	Н			1.1	1.1	1.1	1.5	1.5	1.5	1.5
000	0000	N			1.1	1.1	1.5	1.5	1.5	1.5	2.2
000	6000	Н			1.1	1.5	1.5	1.5	1.5	2.2	2.2
070	7000	N			1.5	1.5	2.2	2.2	2.2	2.2	2.2
070	7000	Н			1.5	2.2	2.2	2.2	2.2	2.2	2.2
000	0000	N			2.2	2.2	2.2	2.2	2.2	3.0	3.0
080	8000	Н			2.2	2.2	2.2	2.2	3.0	3.0	3.0
100	10000	N			2.2	3.0	3.0	3.0	3.0	3.0	3.0
100	10000	Н			3.0	3.0	3.0	3.0	3.0	3.0	4.0
400	40000	N				3.0	3.0	3.0	4.0	4.0	4.0
120	12000	Н				3.0	3.0	4.0	4.0	4.0	4.0
450	45000	N						4.0	4.0	5.5	5.5
150	15000	Н						4.0	5.5	5.5	5.5

Integrated electric control

The control cabinet is installed on the side of the TFD unit, when the control cabinet is delivered. The temperature controller is delivered together with the control cabinet. On site, the control cabinet is installed on the interior wall of the operation room to perform remote control. Field wiring includes the power cable of the control cabinet, and the signal cable between the temperature controller and control cabinet.

Other Notes

- 1. This control function is optional.
- 2. The water valve must be prepared by customers according to the pipe diameter. A 220V three-wire boolean valve is required.
- 3. In all fresh air scenarios, anti-freezing measures must be considered. Valves are not recommended.
- 4. The control system only controls valve on/off, and cannot adjust its opening degree.
- 5. The control system only controls fan motor on/off, and cannot adjust air volume.

ipe diameter. A 220V three-wire boolean valve is required. d. Valves are not recommended. opening degree. t air volume.

Specifications (Jet Type)

Return Air Condition

		Normal Cold								Hig	hly Cold			Condonasta		
Model	Air Flow	Rated Cooling Capacity	Rated Heating Capacity	Water Flow	Water Resistance	Motor power	Chilled Water Pipe Diameter	Rated Cooling Capacity	Rated Heating Capacity	Water Flow	Water Resistance	Motor power	Chilled Water Pipe Diameter	Water Pipe Diameter	Power Supply	Drive Type
TFD	m³/h	kW	kW	l/s	kPa	kW	DN	kW	kW	l/s	kPa	kW	DN	DN		
010	1000	5.1	10.2	0.24	20.8	0.18	32	7.2	12.4	0.34	25.0	0.18	32	25		Direct
020	2000	11.5	21.2	0.55	59.2	0.55	32	14.9	25.3	0.71	84.9	0.55	32	25		drive
030	3000	17.5	32.0	0.83	63.8	1.1	32	22.0	37.3	1.05	76.2	1.1	32	25		
040	4000	23.4	41.5	1.13	89.7	1.1	32	30.1	49.1	1.43	87.1	1.1	32	25	3801/	
050	5000	28.3	51.4	1.37	76.2	1.5	32	35.2	61.8	1.68	47.3	1.5	40	25	2 1	
060	6000	34.5	61.7	1.64	86.4	1.5	32	43.7	73.9	2.08	76.0	1.5	40	25	5 IN -	Belt
070	7000	40.3	71.3	1.92	81.0	2.2	32	49.4	85.3	2.35	70.6	2.2	40	25	50Hz	drive
080	8000	46.2	83.1	2.20	81.2	2.2	32	57.6	98.3	2.74	89.9	3.0	40	25		
100	10000	59.9	108.1	2.85	88.9	3.0	40	75.1	135.3	3.58	55.8	3.0	50	25		
120	12000	69.3	131.7	3.30	89.8	3.0	40	85.8	161.1	4.09	76.9	3.0	50	25		

★ Note:

1. Cooling: The dry bulb temperature of inlet air is 27°C, the wet bulb temperature is 19.5°C, and the water inlet/outlet temperature is 7°C/12°C;

2. Heating: The dry bulb temperature of inlet air is 15°C, the hot water inlet/outlet temperature is 60°C/50°C.

3. The unit is not equipped with external static pressure. If a return air duct is required, please clarify the requirement when you make the order.

4. The specifications are subject to change due to product improvement without prior notice.

5. The water volume in the above table indicates the cold water supply volume. Because the hot water supply volume is smaller than cold water supply volume, cold water supply volume is provided in the table for your reference to select the water pump.

Fresh Air Condition

				Norr	nal Cold	-				High	ly Cold			Condensate		
Model	Air Flow	Rated Cooling Capacity	Rated Heating Capacity	Water Flow	Water Resistance	Motor power	Chilled Water Pipe Diameter	Rated Cooling Capacity	Rated Heating Capacity	Water Flow	Water Resistance	Motor power	Chilled Water Pipe Diameter	Water Pipe Diameter	Power Supply	Drive Type
TFD	m³/h	kW	kW	l/s	kPa	kW	DN	kW	kW	l/s	kPa	kW	DN	DN		
010	1000	13.9	13.2	0.66	85.6	0.18	32	15.8	15.6	0.75	79.2	0.18	32	25		Direct
020	2000	27.0	27.5	1.29	84.8	0.55	32	31.2	31.3	1.49	64.6	0.55	32	25		drive
030	3000	39.9	40.9	1.90	87.0	1.1	32	45.8	45.1	2.18	80.5	1.1	32	25		
040	4000	49.7	51.1	2.37	79.9	1.1	32	63.8	61.8	3.04	66.3	1.1	40	25	3801/	
050	5000	64.5	64.0	3.07	84.0	1.5	32	75.4	70.3	3.59	81.6	1.5	40	25	2 1	
060	6000	72.7	75.5	3.46	38.5	1.5	50	92.6	91.9	4.41	80.5	1.5	40	25	5 14 -	Belt
070	7000	84.1	87.1	4.00	61.0	2.2	50	105.6	104.8	5.03	79.5	2.2	50	25	50Hz	drive
080	8000	99.0	101.7	4.71	87.7	2.2	50	120.7	119.7	5.75	85.7	3.0	50	25		
100	10000	133.1	133.3	6.34	50.6	3.0	65	160.2	157.9	7.63	60.2	3.0	65	25		
120	12000	149.4	155.1	7.12	69.1	3.0	65	185.2	180.4	8.20	82.1	3.0	65	25		

★ Note:

1. Cooling: The dry bulb temperature of inlet air is 35°C, the wet bulb temperature is 28°C, and the water inlet/outlet temperature is 7°C/12°C;

2. Heating: The dry bulb temperature of inlet air is 7°C, the hot water inlet/outlet temperature is 60°C/50°C.

3. The unit is not equipped with external static pressure. If a fresh air duct is required, please specify the requirement when you make the order.

4. The specifications are subject to change due to product improvement without prior notice.

5. The water volume in the above table indicates the cold water supply volume. Because the hot water supply volume is smaller than cold water supply volume, cold water supply volume is provided in the table for your reference to select the water pump.

Return Air Condition (4-Pipe Heating Coil)

			1 R	low		2 Rows				
Model	Air Flow	Rated Heating Capacity	Water Flow	Water Resistance	Water Pipe Diameter	Rated Heating Capacity	Water Flow	Water Resistance	Water Pipe Diameter	
TFD	m³/h	kW	l/s	kPa	DN	kW	l/s	kPa	DN	
010	1000	3.0	0.1	0.17	32	6.2	0.2	0.87	32	
015	1500	4.3	0.1	0.19	32	9.9	0.3	2.1	32	
020	2000	6.7	0.2	0.59	32	13.4	0.4	3.0	32	
025	2500	8.2	0.2	0.63	32	16.4	0.4	3.3	32	
030	3000	10.9	0.3	1.4	32	20.2	0.5	5.3	32	
040	4000	14.8	0.4	1.5	32	27.7	0.7	6.5	32	
050	5000	19.1	0.5	2.5	32	35.2	0.9	11.6	32	
060	6000	23.2	0.6	3.0	32	43.0	1.1	14.2	32	
070	7000	27.6	0.7	4.3	32	49.7	1.2	18.2	32	
080	8000	31.5	0.8	4.0	32	57.3	1.4	18.2	32	
100	10000	42.6	1.1	8.4	32	76.4	1.8	34.0	32	
120	12000	49.4	1.3	9.9	32	87.3	2.4	38.8	32	
150	15000	60.8	1.6	10.0	32	108.3	2.6	37.7	32	

★ Note:

1. Heating: The dry bulb temperature of inlet air is 15°C, the hot water inlet/outlet temperature is 60°C/50°C.

2. The specifications are subject to change due to product improvement without prior notice.

3. The heating coil resistance is 20Pa/row. The external static pressure of a standard unit does not include the heating coil resistance. For example, the outlet static pressure of the unit with hot water coil is deducted 20Pa/row.

Fresh Air Condition (4-Pipe Heating Coil)

			1 R	low			2 R	ows	
Model	Air Flow	Rated Heating Capacity	Water Flow	Water Resistance	Water Pipe Diameter	Rated Heating Capacity	Water Flow	Water Resistance	Water Pipe Diameter
TFD	m³/h	kW	l/s	kPa	DN	kW	l/s	kPa	DN
010	1000	4.3	0.2	0.64	32	7.3	0.2	0.87	32
015	1500	6.3	0.2	0.69	32	11.6	0.3	2.1	32
020	2000	8.9	0.3	1.3	32	16.5	0.5	4.5	32
025	2500	10.9	0.3	1.4	32	20.2	0.5	4.9	32
030	3000	13.7	0.4	2.5	32	25.3	0.7	9.9	32
040	4000	18.3	0.5	2.3	32	33.7	0.9	10.3	32
050	5000	24.2	0.7	4.7	32	42.9	1.1	16.7	32
060	6000	29.1	0.8	5.1	32	51.4	1.3	19.2	32
070	7000	33.9	0.9	6.9	32	61.0	1.5	27.1	32
080	8000	39.3	1.1	7.2	32	69.7	1.7	25.7	32
100	10000	52.4	1.4	13.0	32	93.0	2.3	52.5	32
120	12000	60.7	1.6	14.5	32	106.2	2.6	56.7	32
150	15000	73.8	1.9	13.7	32	130.7	3.2	54.7	32

★ Note:

1. Heating: The dry bulb temperature of inlet air is 7°C, the hot water inlet/outlet temperature is 60°C/50°C.

2. The specifications are subject to change due to product improvement without prior notice.

3. The heating coil resistance is 20Pa/row. The external static pressure of a standard unit does not include the heating coil resistance. For example, the outlet static pressure of the unit with hot water coil is deducted 20Pa/row.

Jet Type Unit Design Selection

The thermal performance parameter calculation of the jet type air handling unit adopting the spherical nozzle is the same with that of the ordinary ceiling type unit. In design selection, mainly the air flow organization is calculated. For a specified project, the proper jet type air handling unit needs to be selected after the air supply distance, unit installation height, air supply temperature, and air supply volume are determined, and the cold and hot air flow supplied by the unit must meet the following requirements:

1. The cold and hot air are sent to the specified location.

2. The cold jet flow does not drop down during the supply process to avoid causing uncomfortable feelings to people.

3. The hot air can be sent to the required height and location.

4. The air side temperature difference meets the design requirement.

Design selection must consider the mutual impact of the multiple air supply nozzles of the unit. The spread of the jet flow is approximately 0.4 times wider than the jet range. An appropriate configuration is to make the unit deployment density slightly smaller than the diffusion width. If the unit is installed closely to the ceiling, the impact of adhesion should also be considered. The jet range of the attached air flow is 1.4 times larger than the common air flow.

Based on the performances of the unit and the spherical nozzle, the recommended horizontal air supply range (unit: m) of various types of air handling units is as follows:

Model TFD	010	020	030	040	050	060	070	080	100	120
Jet range	14	21	21	21	25	22	28	30	28	31
Distance	20	27	27	27	31	28	34	36	34	37

★ Note:

1. The maximum spread width of the unit jet flow is about 40% of the jet range. Therefore, unit deployment should take into consideration the air flow spread angle, and the distance between units should not be too large

2. The units can be deployed on a single side or on opposite sides. If neither the deployment can meet the jet range, an induction fan can be adopted to continue the air supply. The induction fan is deployed by every 4 to 6 meters in vertical direction, and by every 6 to 10 meters in horizontal direction.

3. Range: distance when the air side air flow is 0.5m/s.

4. Distance: distance when the air side air flow is 0 m/s

Dimensions and Weights

Direct Drive and Belt Drive Series

Model A B	<u> </u>	D	E	E	Air C Fla)utlet nge		K		Ν	1		N		D	0	D	Air R Flai	eturn nge	Unit V	Veight		
TFD	A	D	U	D	E	Г	G	Н	J	ĸ	L	Normal Cold	Highly Cold	No C	rmal old	Highly Cold	F	Q	ĸ	S	Т	Normal Cold	Highly Cold
060	1757	635	950	1593	585	850	840	262	215	226	385	108	86	64	94	108	150	514	90	1553	525	139	180
070	1997	635	950	1833	585	850	840	262	215	346	385	108	86	64	94	108	150	514	90	1793	525	192	222
080	2207	635	950	2043	585	850	840	262	215	451	385	108	86	64	94	108	150	514	90	2003	525	231	271
100	2287	790	1050	2123	740	950	862	341	215	483	385	108	86	64	108	108	155	667	90	2063	680	279	309
120	2477	790	1050	2313	740	950	1114	341	215	437	385	108	86	64	108	108	155	667	90	2253	680	287	311
150	2477	940	1150	2313	890	1050	1040	404	215	557	385	108	86	94	108	108	155	819	90	2253	830	372	414

★ Note:

1. The value 25(20) is the distance between the lifting hole and the outer edge of the unit base. It is 20 for 040 type and earlier type, and is 25 for types later than 040. The diameter of the lifting hole for 150 type is Φ20mm. 2. The above unit size does not contain the size of the heating coil. If the heating coil is required, the unit size F should be increased by 100 mm (for TFD010-025) or 200 mm (for TFD030-150).

3. The above weight and size do not include the built-in control cabinet

N	1	N		Р	0	Б	Air R Flai	eturn nge	Unit V	Veight
rmal old	Highly Cold	Normal Cold	Highly Cold	г	Q	ĸ	S	т	Normal Cold	Highly Cold
08	86	64	108	150	413	90	493	445	50	57
08	86	64	108	150	413	90	643	445	57	63
08	86	64	108	150	413	90	783	445	71	81
08	86	64	108	150	514	90	843	525	76	86
08	86	64	108	150	514	90	943	525	90	121
08	86	64	108	150	514	90	1163	525	99	129
08	86	64	108	150	514	90	1343	525	128	158

Model		D	0		-	F		Ν	Л		N		D	P Q R	Air R Flai	eturn nge	Number	Jet Air	Outer	Inner	Unit V	Veight	
TFD	A	D	C	D	E	F	L	Normal Cold	Highly Cold	No C	rmal old	Highly Cold	P	Q	ĸ	S	Т	Outlets	Outlet Size	Diameter	Diameter	Normal Cold	Highly Cold
010	717	545	1305	553	505	1200	385	108	86	64	64	108	150	413	90	493	445	1	Φ315	384	190	50	57
020	1007	545	1340	843	505	1200	385	108	86	64	64	108	150	413	90	783	445	1	Φ315	384	190	71	81
030	1167	625	1390	1003	585	1250	385	108	86	64	64	108	150	514	90	943	525	1	Φ400	467	230	90	121
040	1387	625	1390	1223	585	1250	385	108	86	64	64	108	150	514	90	1163	525	2	Φ400	467	230	99	129
050	1567	635	1390	1403	585	1250	385	108	86	64	64	108	150	514	90	1343	525	2	Φ400	467	230	128	158
060	1757	635	1390	1593	585	1250	385	108	86	64	94	108	150	514	90	1553	525	2	Φ400	467	230	139	180
070	1997	635	1390	1833	585	1250	385	108	86	64	94	108	150	514	90	1793	525	3	Φ400	467	230	192	222
080	2207	635	1390	2043	585	1250	385	108	86	64	94	108	150	514	90	2003	525	3	Φ400	467	230	231	271
100	2287	790	1500	2123	740	1350	385	108	86	64	108	108	155	667	90	2063	680	2	Φ500	600	275	279	309
120	2477	790	1500	2313	740	1350	385	108	86	64	108	108	155	667	90	2253	680	3	Φ500	600	275	287	311

★ Note:

1. The value 25(20) is the distance between the lifting hole and the outer edge of the unit base. It is 20 for 040 type and earlier type, and is 25 for types later than 040.

2. The above weight and size do not include the built-in control cabinet.

Technical Specifications

Heat & energy recovery ventilator (without any coils)

Madal	Air flow	Cooling capacity	ty Heating ty capacity	External sta	atic pressure	Motor	power	Dewereunnly	Noise
Model	m³/h	kW	kW	Air supply/Pa	Air discharge/ Pa	Air supply/kW	Air discharge/ kW	Power supply	dB(A)
010EC	1000	6.8	6.7	90	90	0.20	0.20	220V-50Hz	53
	1000	0.0	0.7	120	120	0 15	0 15	2200-00112	
				110	110	0.30	0.30	-	
				150	150	030	0.30	220V-50Hz	
04550	4500	40.0	10.4	180	180	0.45	0.45		50
UTSEC	1500	10.2	10.1	70	70	0.25	0.25	-	53
				130	130	0.25	0.25	380V3N-50Hz	
				200	200	0.32	0.23	-	
				80	80	0.375	0.375		
				120	120	0 45	0.45	-	
				150	150	0.45	0.45	-	
				180	180	0.45	0.45	220V - 50Hz	
020FC	2000	13.6	13.5	200	200	0.55	0.55	1	55
				250	250	055	0.55		
				50	50	0.32	0.32		
				220	220	0 55	055	380V 3N-50Hz	
				300	300	075	0.75		
				40	40	0 45	0.45	-	
				60	60	0.45	0.45	-	
				80	80	0.45	0.45		50
025FC	2500	17	16.8	110	110	0.55	0.55	380V3N-50Hz	56
				130	130	0.55	0.55	-	
				240	240	1.00	1.00	-	
				40	40	055	0.55		
				60	60	0.55	0.55	-	
				80	80	0.55	0.55	-	
				100	100	0.55	0.55	-	
				150	150	0.75	0.75		
030FC	3000	20.4	20.2	220	220	0 75	0 75	380V3N-50HZ	58
				270	270	075	0.75]	
				310	310	0 75	0.75		
				370	370	0.75	0.75	_	
				400	400	1.00	1.00		
				50	50	1.00	1.00	-	
				80	80	1 00	1.00	-	
				110	110	1 00	1.00	-	
04050	4000	07.0	00.0	130	130	1 00	1 00	2001/201 501	50
040FC	4000	27.2	26.9	1/0	1/0	1.00	1.00	380V3N-50Hz	59
				220	220	1.30	1.30	-	
				380	380	1.50	1.50	-	
				420	420	1.30	1.30	-	
				720	720	1.00	1.00		

	Air flow	Cooling capacity	Heating capacity	External sta	atic pressure	Motor	power		Noise
Model	m³/h	kW	kW	Air supply/ Pa	Air discharge/ Pa	Air supply/ kW	Air discharge/ kW	 Power supply 	dB(A)
				40	40	1.10	1.10		
				70	70	1.10	1.10	1	
				100	100	1.50	1.50	1	
				160	160	1.50	1.50]	
050511	5000	24.0	22.7	240	240	1.50	1.50		<u> </u>
USUFH	5000	34.0	33.7	270	270	1.50	1.50	380V 3N-50HZ	62
				340	340	2.20	2.20		
				390	390	2.20	2.20		
				470	470	2.20	2.20]	
				540	540	3.00	3.00		
				40	40	0.55*2	0.55*2		
				60	60	0.55*2	0.55*2		
				80	80	0.55*2	0.55*2		
				100	100	0.55*2	0.55*2		
06054	6000	40.8	40.4	150	150	0.75*2	0.75*2	3801/ 301 501-7	62
000FH	0000	40.8	40.4	220	220	0.75*2	0.75*2	3000 310-30112	02
				270	270	0.75*2	0.75*2		
				310	310	0.75*2	0.75*2		
				370	370	0.75*2	0.75*2		
				400	400	1.00*2	1.00*2		
				50	50	1.00*2	1.00*2		
				80	80	1.00*2	1.00*2		
				110	110	1.00*2	1.00*2		
				130	130	1.00*2	1.00*2		
080FH	8000	54.4	53.9	170	170	1.00*2	1.00*2	380V3N-50Hz	63
				220	220	1.30*2	1.30*2]	
				360	360	1.50*2	1.50*2		
				380	380	1.50*2	1.50*2		
				420	420	1.80*2	1.80*2		
				40	40	1.10*2	1.10*2		
				70	70	1.10*2	1.10*2		
				100	100	1.50*2	1.50*2		
				160	160	1.50*2	1.50*2		
10554	10500	71.4	70.7	240	240	1.50*2	1.50*2	2901/201 501-	66
IUDEL	10000	/ 1.4	10.1	270	270	1.50*2	1.50*2	300V 3N-30HZ	00
				340	340	2.20*2	2.20*2		
				390	390	2.20*2	2.20*2		
				470	470	2.20*2	2.20*2		
				540	540	3.00*2	3.00*2		

★ Note:

1. Cooling: The dry bulb temperature of fresh air is 35°C, and the wet bulb temperature is 28°C; the dry bulb temperature of air return is 27°C, and the wet bulb temperature is 19.5°C.

2. Heating: The dry bulb temperature of fresh air is -7°C, and the dry bulb temperature of air return is 20°C;

3. The specifications are subject to change due to product improvement without a prior notice;

4. The static pressure shown in bold type is a standard static pressure, and the other static pressures are optional. Noise parameters are tested under the standard static pressure.

Heat & energy recovery ventilator (with two rows of coils)

	Air flow	С	ooling capac	ity	He	eating capacit	ły	Water flow	Water resistance	Extern	nal static ssure	Rate	d power		Noise
Model	(m³/h)	Q _{Total} kW	Q ^{Recovery} kW	Q _{Maink} W	Q _{Total} kW	Q ^{Recovery} kW	Q _{Maink} W	(I/S)	(kPa)	Air supply/ Pa	Air discharge/ Pa	Air supply/ kW	Air discharge/ kW	Power supply	dB(A)
010FC	1000	11.0	6.8	4.2	12.0	6.5	5.7	0.2	13	70	90	0.15	0.20	220V - 50Hz	53
015FC	1500	16.7	10.2	6.5	18.3	9.5	8.8	0.3	15	130	110	0.45	0.30	220V~50Hz	53
020FC	2000	22.7	13.6	9.1	25.0	12.7	12.3	0.4	13	130	120	0.45	0.45	220V-50Hz	55
025FC	2500	27.8	17.0	10.8	30.5	15.9	14.6	0.5	29	120	110	0.75	0.55	380V3N~50Hz	56
030FC	3000	35.2	20.4	14.8	39.1	19.1	20.0	0.7	56	170	100	0.75	0.55	380V3N-50Hz	58
040FC	4000	47.6	27.2	20.4	53.0	25.5	27.5	1.0	55	170	110	1.30	1.00	380V3N-50Hz	60
050FH	5000	59.1	34.0	25.1	65.7	31.8	33.9	1.2	58	190	100	1.50	1.50	380V3N-50Hz	62
060FH	6000	70.4	40.8	29.6	78.2	38.2	40.0	1.4	56	170	100	0.75x2	0.55x2	380V3N-50Hz	61
080FH	8000	95.2	54.4	40.8	106.0	50.9	55.1	2.0	55	170	110	1.30x2	1.00x2	380V3N-50Hz	62
105FH	10500	124.1	71.4	52.7	138.0	66.8	71.2	2.5	58	190	100	1.50x2	1.50x2	380V3N~50Hz	65

Heat & energy recovery ventilator (with four rows of coils)

	Air flow	C	ooling capaci	ity	He	ating capacit	ty	Water flow	Water resistance	Extern pre	nal static ssure	Rated	d power		Noise
Model	(m³/h)	Q _{Total} kW	Q ^{Recovery} kW	Q _{Maink} W	Q _{Total} kW	Q ^{Recovery} kW	Q _{Maink} W	(I/S)	(kPa)	Air supply/ Pa	Air discharge/ Pa	Air supply/ kW	Air discharge/ kW	Power supply	dB(A)
015FC	1500	21.3	10.2	11.1	24.5	9.5	14.9	0.5	32	80	110	0.45	0.30	220V~50Hz	53
020FC	2000	29.1	13.6	15.5	33.6	12.7	20.9	0.7	25	80	80	0.45	0.375	220V~50Hz	55
025FC	2500	35.4	17.0	18.4	40.7	15.9	24.8	0.9	43	140	110	1.00	0.55	380V3N~50Hz	56
030FC	3000	45.6	20.4	25.2	53.1	19.1	34.0	1.2	54	120	100	0.75	0.55	380V3N~50Hz	58
040FC	4000	61.9	27.2	34.7	72.3	25.5	46.8	1.7	58	120	110	1.30	1.00	380V3N~50Hz	59
050FH	5000	76.7	34.0	42.7	89.4	31.8	57.6	2.0	59	140	100	1.50	1.50	380V3N~50Hz	62
060FH	6000	91.1	40.8	50.3	106.1	38.2	67.9	2.4	54	120	100	0.75x2	0.55x2	380V3N~50Hz	61
080FH	8000	123.8	54.4	69.4	144.5	50.0	93.6	3.4	58	120	110	1.30x2	1.00x2	380V3N~50Hz	62
105FH	10500	161.0	71.4	89.6	187.8	66.8	121.0	4.3	59	140	100	1.50x2	1.50x2	380V3N~50Hz	65

★ Note:

1. Cooling: The dry bulb temperature of fresh air is 35°C, and the wet bulb temperature is 28°C; the dry bulb temperature of air return is 27°C, and the wet bulb temperature is 19.5°C; the water inlet/outlet temperature is 7°C/12°C;

2. Heating: The dry bulb temperature of fresh air is -7°C, the dry bulb temperature of air return is 20°C, and the water inlet/outlet temperature is 60°C/50°C;

4. The specifications are subject to change due to product improvement without a prior notice;

3. QTotal=QRecovery+QMain. QTotal: Fresh air load; QRecovery Recovered cooling/heating capacity; QMain: Cooling/heating capacity provided by the chiller or boiler;

Dimensions and Weights

Heat & energy recovery ventilator (without any coils)

,		(Ø20mm)		The	unit is of left type	
	Dimer	nsion (mm)			Unit weight	
	E	F	G	a×b	(kg)	
	500	1261	50	220×190	122	

Installation form	Unit weight			nsion (mm)	Dimer			Model
	(kg)	a×b	G	F	E	D	А	TFD
Ceiling-mounted	122	220×190	50	1261	500	947	1107	010FC
Ceiling-mounted	151	350×190	50	1418	500	1240	1400	015FC
Ceiling-mounted	166	380×220	50	1418	580	1240	1400	020FC

Model			Dimer	nsion (mm)			Unit weight	Installation form
TFD	А	D	E	F	G	a×b	(kg)	Installation form
060FH	1735	1575	1320	1732	80	500×910	444	Horizontal
080FH	2049	1889	1320	1732	80	650×910	504	Horizontal
105FH	1735	1575	1700	2360	80	550×1200	558	Horizontal

Heat & energy recovery ventilator (with two/four rows of coils)

Model			Dimens	ion (mm)			Chilled water pipe diameter	Condensate water pipe diameter	Unit weight (2/4 rows)	Installation form
TFD	А	D	E	F	G	a×b	DN	DN	(kg)	
010FC	1107	947	500	1889	50	220×190	40	25	144 / —	Ceiling-mounted
015FC	1400	1240	500	2046	50	350×190	40	25	178 / 202	Ceiling-mounted
020FC	1400	1240	580	2046	50	380×220	40	25	186 / 214	Ceiling-mounted

Model

The unit is of left type

ifting hole (Ø20r

Model			Dimen	sion (mn	n)		Chilled water pipe diameter	Condensate water pipe diameter	Unit weight (2/4 rows)	Installation form
TFD	А	D	Е	F	G	a×b	DN	DN	(kg)	
025FC	1400	1240	660	2360	80	400×250	40	25	209 / 240	Ceiling-mounted
030FC	1735	1575	660	2360	80	500×250	40	25	242 / 280	Ceiling-mounted
040FC	2049	1889	660	2360	80	650×250	40	25	318 / 355	Ceiling-mounted
050FH	1735	1575	850	2831	80	550×350	40	25	347 / 376	Horizontal

Model Dimension (mm)								Chilled water pipe diameter	Condensate water pipe diameter	Unit weight (2/4 rows)	Installation form
	TFD	А	D	E	F	G	a×b	DN	DN	(kg)	
	060FH	1735	1575	1320	2360	80	500×910	40	25	484 / 560	Horizontal
	080FH	2049	1889	1320	2360	80	650×910	40	25	636 / 710	Horizontal
	105FH	1735	1575	1700	2831	80	550×1200	40	25	690 / 741	Horizontal

Modular Air Handling Unit

Various application scenarios

Modular Air Handling Unit

Features

Reliable quality >>

Patented structure, low air leakage rate

TICA patented design of labyrinth seal structure which provides low air leakage formed by using aluminum sections with concave and convex chamfer at joints of AHU body and tightening with bolts and nuts.

Robust structural design

TICA labyrinth AHU has an aluminum alloy frame and a hidden metal inner frame, in which the former constitutes a rigid body with high resistance to torsion by using a tenon structure and tightening with bolts and nuts, while the latter greatly improves the strength of the unit.

Flat interior, applicable for purification applications

Prevention of cold bridge and rust

TICA labyrinth AHU is flat interiorly and has no insulation strips, seals and small cumbersome parts, making it ideal for purifiying air conditioning and IAQ. The inner panel can be of hot dip galvanized panel, color panel or stainless steel panel.

All metals inside TICA labyrinth AHU are isolated from those outside by means of polyurethane foaming and specially designed seals, eliminating insulation strips commonly used in general AHUs and therefore preventing the cold bridge. Frames of aluminum sections are embedded around all panels, completely isolating corners of metal panel from air and moisture and thereby preventing rust spot on panels.

Leveling device

A leveling device is provided on the base, which levels individual AHU body before connecting functional sections of two AHUs, ensuring seamless connection of AHUs.

Professional selection software

TICA's AHUs are selected by professional selection software which is programmed in strict accordance with laws of engineering and modified according to actual service to provide more reliable software

Modular Design >>

The MAHUs adopt module design. Usually including mixing section, primary eciency lter section, medium eciency lter section, high eciency Iter section, cooling coil section, heating coil section, humidier section, sound attenuator section, service section, heat recovery section, fan section and so on. Function sections can be combined freely. Dierent function sections can be selected according to the specic applications.

The MAHUs can be shipped in divided sections. Each section is wholly completed at manufacturer's work place, and only connection of sections can be done at site. Oversized units cannot be tted in normal container shipment or cannot be delivered through access at site can be considered shipment in complete knock down form, but reassembling works must be done by engineers of the manufacturer.

Good Rigidity >>

Labyrinth structure

- Frame integrated with the thermal insulation panel through the highpressure polyurethane foam of the density of 50kg/m3.
- · Connection between panels enabled by tenon structure
- · Inside steel frame with double side reinforcements at each joint (as illustrated in the figure below), provide a good solution for unit rigidity.

Quiet Operation >>

Professional software >>

Famous brand fan and motor, low noise motor, low vibration, unit operation at optimum working point

TICA ANU BI in the second PROJECT DEACU-8-DEFAC-3 -----Incaria a property B Design & Section III Reports of No. 7. Dimension Text: Anto: 8 Autor: Auto Hovers (7 Fiberi (7) Colu (8) 100 Air Soler And Outlet (4) General (5) Nanjing TICA Climate Solutions Co., Ltd. 1500 Main View

Structural Features and Components

options for indoor and outdoor operation environments.

TICA Air Handling Units are produced in different cross sections to meet airflows between 1,000 and320000 m3/ h. The air handling units are designed for the panels and profiles to ensure a high mechanical strength and thermal performance features. A wide range of options and accessories is available, with focus on environmental awareness

Patented structure

Patent No.: CN 203757975U The cabinet panel adopting overall foam molding technology is surrounded by an aluminum alloy profile frame with concave and convex arooves

The mechanical strength of the cabinet reaches the D1 grade of European standard EN1886, and the air leakage rate reaches the L1 grade of the same standard.

designed blades have built in high quality bearings. Blade edges are lined with sealing strip to restrict leakage to an absolute minimum.

Silencer

The aerodynamic structure with special design offers maximum sound absorption values with minimum pressure losses.

High efficient IE3 motors IP 55 protection, class F insulation and class B temperature rise fan motors. The motors are self- cooled TEFC type.

Frameless System

Software Ver.:

Pricing Ver.:

Window Role :

Expiry Date :

Renewal Days Left : 11 days

Initializing component engines .

Patch No.:

Framework No.: Database Ver.:

TICA AHU

TICA

3.1

1.0.0.0

3.20200923

3.20210401

3,20210427

Administrator

Friday December 31, 2021

MAHU are manufactured in accordance with EN 1886 standards against hard atmospheric conditions with alternative

Filter

Filter section is consisted of galvanized steel frame structure and an access door for maintenance. Plate. bag and HEPA filter are optional

Heating coil and Cooling coil

Certified coils with AHRI 410. Wide range of possibilities are available as the tubesfins combinations and, coating materials

Panel / Frame

Patented "Labyrinth" panel is integrated male and female aluminum prole. Dierent panels of the unit casing are mounted and locked by the labyrinth prole, then fastened with bolts and nuts by embedded sheet metal inside the aluminum prole, and interior steel frame are used on the panel connection to enhance the strength. Square steels would be mounted inside the units to enhance strength for large airow casing

Dampers / Actuator

Air dampers aerodynamically designed blades have built in high quality bearings.

- The dampers are made of Aluminum or galvanized steel material.
- The damper actuator with high accuracy and good stability.

It is divided into two types: analog actuator and ON/OFF actuator.

Fans

The vibration levels of the complete fan assembly (fan wheel, motor and drives assembled as a whole system) is checked and dynamically balanced in the factory.

Fans are mainly consisted of scroll, impeller, frame, bearing and shaft. The scroll is made of hot galvanized steel sheet. Its side plate has an outline complying with aerodynamics. The impeller is made of high grade hot galvanizing steel sheet and is designed to a special con guration according to aerodynamics to make the e ciency highest and the noise lowest. The high quality ball bearings are air-sealed, with preset lubricating oil, and of automatically alignment. The shafts are made of 40Cr or C45 carbon steel bars. They are coated after assembly in order to provide corrosion resistance.

Filter

Filter section is consisted of galvanized steel frame structure and an access door for maintenance. Plate, bag and HEPA filter are optional. The filter frame of TICA's patented structure has low air leakage rate and high structural strength, which fully guarantees the cleanliness of the air.

Motors

Totally enclosed fan cooled motors, with class F insulation, are mounted on slide rails with provision for V-belt tensioning. Fan and motor are mounted on a common base frame tted with anti-vibration mountings and the fan discharge is provided with a retardant exible connection to completely isolate the fan and motor assembly from the unit casing High efficient IE3 motors IP 55 protection, class F insulation and class B temperature rise fan motors. The motors are self- cooled TEFC type.

Heating and Cooling Coils

The coils are in accordance with AHRI 410 standards and Eurovent certified, with a wide range of alternatives for tube diameters and types and fins combinations as well as fin coating materials (hydrophilic / epoxy) Water heating / cooling and steam coils vary according to project requirements. All the coils are tested at 2.4 MPA. Stainless steel drain pans and drop eliminators are available.

Humidifiers

Humidifers are necessary for health care facilities and processing systems in pharmaceutical, semiconductor, textile, communication centers, and computer rooms.

In MAHU, wet film vaporization, dry steam, electrode boiler, and water spray humidifiers are widely used. Wet film vaporization humidifier is a type of enthalpy humidifier or evaporation gasification humidifier. Through the principle of exchange of heat and moisture, the air is humidied and cooled. The medium is inorganic material which is highlife, high reliability, clean, good heat conduction and bacteria resistance. Dry steam or electrode boiler humidifiers are widely used in where a warm air supply and humidity control are needed in winter.

Heat Recovery Systems

Energy consumed by HVAC systems constitutes an important part in the total energy consumption of buildings. For this reason, especially for systems operating with 100% outdoor air, energy savings can be done through the heat transfer between exhaust air and fresh air. The objective here is while maximizing the use of the heat and energy of the exhaust air, taking into account the return on investment analysis to choose the heat recovery system that does not allow unwanted air mixtures.

Depending on the type of heat recovery used, heat, energy and humidity can be recovered at the same time, sensible and latent heat transfer rates are calculated separately for dry and total efficiency according to indoor and outdoor conditions

$\stackrel{\wedge}{\backsim}$ Heat Wheel Heat Recovery

This type heat recoverys that can provide the most efficient heat and energy recovery depending on the climate and indoor environment conditions. The rotor blades are made of aluminum material. Supply and exhaust air pressure drops are very important in design. variable speed depending on air pressure drops are very important in design.

Access doors are available where necessary for easy maintenance and cleaning. With these units, up to 70-90% of energy recovery can be done depending on the system.

☆ Plate Type Heat Recovery

Plate type heat recovery units consist of aluminum fins and a frame designed to create different channels for the exhaust air and fresh air not to interfere with each other as much as possible. Parallel flow or cross flow depends on the application area. The plate can be made of aluminum, cellulosic or porous plastic material and can ensure efficiency levels up to 60-80%, always depending on the selection and the project conditions.

$\stackrel{\wedge}{\backsim}$ Heat Pipe Heat Recovery

The heat pipe heat recovery units are made a closed system containing two copper coils charged with refrigerant. One is placed on the fresh air side and the other on the exhaust air side. The heat transfer is achieved from the refrigerant in the coils to the air.

During this process of heat exchange between the refrigerant in the coils and the air, there is no by-pass risk. According to the climate conditions and the application, different types of heat pipe heat recovery; horse-shoe, vertical type and horizontal type.

Depending on the operation conditions, the efficiency of these heat recovery systems can reach up to 60-70%.

$\stackrel{\wedge}{\backsim} \textbf{Run-Around Heat Recovery}$

Water heat recovery units are made by placing two water coils on the fresh air and exhaust air side and transferring the heat transfer in the water flowing between the coils to the air. This type of heat recovery is more common, especially for hygienic applications due to the lack of mixing risk between the fresh air and the exhaust air. The most important factors to be considered in the selection of the run around heat recovery units are the optimum coil face velocity of the air, the air side pressure drops and the freezing risk to be discarded depending on the fluid temperatures. Since the condensation risk in winter conditions is high for the return air, the drain pan is provided as standard.

Nomenclature

Example:

TBC 2224 CHW

Skin thickness = 50mm, Panel height = 22 x 100mm, Panel width = 24 x 100mm,

Technical Specifications

TAC/TRC		Coil Face Velocity(m/s)								
IAC	/IBC	2.00	2.25	2.50	2.80	3.00	3.50			
06	07	1567	1762	1958	2193	2351	2742			
06	08	1790	2014	2238	2506	2685	3133			
06	09	2207	2783	2758	3089	3311	3862			
06	10	2527	2843	3158	3537	3791	4422			
07	10	2888	3249	3610	4043	4332	5054			
07	11	3253	3660	4067	4555	4880	5693			
08	10	3610	4061	4512	5053	5415	6318			
08	11	4067	4575	5083	5964	6101	7117			
08	12	4524	5089	5655	6334	6786	7917			
08	13	4981	5604	6226	6974	7472	8717			
08	14	5438	6118	6798	7614	8157	9517			
10	12	5881	6616	7351	8234	8822	10292			
10	13	6476	7285	8094	9066	9714	11333			
10	15	7664	8622	9580	10730	11496	13412			
10	16	8259	9291	10323	11562	12389	14453			
11	15	8843	9949	11054	12381	13265	15475			
11	16	9529	10720	11911	13341	14294	16676			
11	17	10215	11492	12769	14301	15323	17876			
12	17	10896	12258	13620	15254	16344	19068			
12	18	11628	13081	14534	16279	17442	20349			
13	17	12258	13790	15322	17161	18387	21452			
13	18	13081	14716	16351	18313	19622	22892			
13	19	13904	15642	17380	19465	20856	24332			
14	19	14676	16511	18345	20547	22014	25683			
14	20	15545	17488	19431	21763	23318	27204			
15	19	16221	18249	20277	22710	24332	28387			
15	21	18141	20409	22677	25398	27212	31747			
16	21	19005	21381	23757	26607	28508	33259			
16	22	20011	22513	25014	28016	30017	35019			
16	24	22023	24776	27529	30832	33035	38540			
19	22	24559	27629	30699	34383	36839	42978			
19	23	25794	29018	32242	36111	38691	45140			
19	25	28263	31795	35328	39568	42395	49460			
20	25	29309	32973	36637	41033	43964	51291			
20	26	30589	34413	38237	42825	45884	53531			
21	26	32774	36871	40968	45884	49161	57355			
22	27	33866	38099	42333	47412	50799	59266			
23	26	36052	40558	45065	50473	54078	63091			
22	30	39536	44478	49420	55351	59304	69188			
25	28	42621	47949	53276	59670	63932	74587			
25	31	47559	53504	59449	66582	71339	83228			
25	34	52497	59059	62621	73495	78746	91870			
28	34	59788	67261	74735	83703	89682	104629			
28	38	67286	75697	84107	94200	100929	117751			
29	40	72767	81863	90959	101874	109151	127342			
31	41	79292	89204	99115	111009	118938	138761			
32	45	89467	100650	111833	125253	134201	156567			
35	46	101523	114213	126904	142432	152285	177665			
37	50	117371	132042	146713	164319	176057	205399			
38	55	136921	154037	171152	191690	205382	239612			
43	58	165054	185685	206317	231075	247581				
45	65	191575	215522	239469	268205	280000				

Unit in m³/h

Application

Hotel

Industrial

Shopping mall

Airport

Shopping mall/Supermarket

The area has a large space, dense personnel, fresh air demand, large cooling load, large airsupply which is a comfortable place.

Target temperature and humidity: 18°C~26°C,30%~60%

Hotel

The room size is relatively fixed, with fixed personnel, fresh air demand, low cooling loadand noise demand, which is a comfortable place.

Target temperature and humidity: 18°C~26°C,30%~60%

Restaurant

Cinema

The auditorium of the cinema has ahigh ceiling, with more people, freshair demand, and large cooling load. Target temperature and humidity:18°C~26°C,30%~60%, each auditorium has a separate terminalair supply system, which cannot beshared.

The area is densely staffed, has fresh airdemand, and has a large cooling

Target temperature and humidity: 18°C~26°C,30%~60%.

Functional Sections Specifications

		(unit in mm)
Section's Name	Symbol	Specifications (for reference only)
Mixing Section		ModelL0607-11176001217-21268002227-253410002834-45651200
Fresh Air and Exhaust Air Section		Model L 0607-1925 1200 2025-2940 1500 3141-4565 1800
Plate Filter Section		L = 100mm Plate filter can be Pre-filter or Secondary filter, can be install inside the Mixing Section or as External Filter Section.
Bag Filter Section or Rigid Filter Section		Bag Filter L = 400 Rigid Filter L = 400
External Filter Section		L = 100 Install at outside of unit and will not take up space inside unit.
Fan Section		L = 700 - 3500 Details refer to Sections Length Table.
Cooling Coil Section		Model L(1R-4R) L(5R-6R) L(8R-12R) 0607-2940 600 700 900 3141-4565 1000 1000 1200
Heating Coil Section		ModelL(1R-2R)0607-29403003141-4565600For model smaller than 3141, if heating coil is locatedafter cooling coil which is not larger than 8 rows, theheating and cooling coil can be located in L the samedrain pan. Total length is 900mm.
Electric Heater Section	<u> </u>	T L < 4 300 ≥ 4 700 T = Electric Power (W) / Air Flow (CMH)
Steam Humidifier Section	>0 >0	L = 600 If it is located after Fan, L = 900.

Section's Name	Symbol	
Wet Film Humidifier Section		If it is inst need indiv dent sectio
High Pressure Spray Humidifier Section		L = 900 (Need mo
Air Washer Humidifier Section	b€ 30 b€ 30 b€ 30	Double ro
Heat Recovery Section		L must be device se
Diffusion Section		L = 600
Access Door Section		L = 600 Access [Cooling (Attenuato
Supply Air Section		Model 0607-11 1217-21 2227-25 2834-45
De-Humidifier Section		L must b used.
Sound Attenuator Section		L = 500,8
	Gas Heater Section	
	Self-Cleaning High Efficiency Filter Section	
	Moisture Eliminator	S
	Evaporative Cooling Section	
		1

	(unit in mm)
	Specifications (for reference only)
	If it is installed next to Cooling Coil Section, does not need individual section length; if located in an independent section, $L = 600$
	L = 900 (Need moisture eliminator)
	Double rows L=2100
	L must be determined by the actual Heat Recovery device selected.
	L = 600
	L = 600 Access Door can be added before Filter Section, Cooling Coil Section, Heating Coil Section, Sound Attenuator Section, etc to ease maintenance works.
	Model L 0607-1117 600 1217-2126 800 2227-2534 1000 2834-4565 1200
	L must be determined by the actual De-Humidifier used.
	L = 500,800,1100 for option
	L = 3000
er Section	L = 1800
	Share length with cooling coil section
lion	L = 900

Follow the Account of TICA to see more solutions

NANJING TICA CLIMATE SOLUTIONS CO.,LTD. Add: No.6 Hengye Road, Development Zone, Nanjing, China Post: 210046 Tel: +86-25-85326977 E-mail: global@ticachina.com Website: www.global.tica.com